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Abstract

Deoxyribonucleic acid (DNA) methylation (DNAm) is an important epigenetic mechanism that plays a role in chromatin structure and
transcriptional regulation. Elucidating the relationship between DNAm and gene expression is of great importance for understanding
its role in transcriptional regulation. The conventional approach is to construct machine-learning-based methods to predict gene
expression based on mean methylation signals in promoter regions. However, this type of strategy only explains about 25% of gene
expression variation, and hence is inadequate in elucidating the relationship between DNAm and transcriptional activity. In addition,
using mean methylation as input features neglects the heterogeneity of cell populations that can be reflected by DNAm haplotypes. We
here developed TRAmaHap, a novel deep-learning framework that predicts gene expression by utilizing the characteristics of DNAm
haplotypes in proximal promoters and distal enhancers. Using benchmark data of human and mouse normal tissues, TRAmHap shows
much higher accuracy than existing machine-learning based methods, by explaining 60∼80% of gene expression variation across
tissue types and disease conditions. Our model demonstrated that gene expression can be accurately predicted by DNAm patterns
in promoters and long-range enhancers as far as 25 kb away from transcription start site, especially in the presence of intra-gene
chromatin interactions.
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INTRODUCTION
Deoxyribonucleic acid (DNA) methylation (DNAm) is a funda-
mental epigenetic modification that plays a critical role in a
wide range of biological processes, such as embryogenesis [1]
and aging [2], through the mechanisms of transposable element
repression, genetic imprinting and X chromosome inactivation [3].
DNAm refers to the addition of a methyl group to the carbon
5 position of the cytosine ring, resulting in the formation of 5-
methylcytosine [4, 5], which typically occurs at 60–90% of CpG
sites in the genome, except for CpG islands (CGIs) located in pro-
moter regions that are usually unmethylated in normal cells [6]. In
cancer, hypermethylation of CGIs in promoter regions can lead to
the repression of tumor suppressor genes and the promotion of
tumorigenesis [7, 8]. While the role of DNAm in regulating gene

expression is still a topic of ongoing research, it is known that
DNAm can act not only as a repressor but also as an activator
of gene expression by recruiting chromatin remodeling complexes
through methyl-binding proteins [9, 10]. Motivated by these obser-
vations, a variety of quantitative models, including statistical and
machine learning-based models, have been developed to predict
gene expression using DNA methylation features [11, 12].

Although the relationship between DNA methylation and tran-
scriptional activity has been widely investigated, the correlation
between gene expression and DNA methylation in its promoter
region is weak, with the Pearson’s correlation coefficient around
−0.3 [13]. This may be due to the uncharacterized role of DNA
methylation in controlling gene expression or the heterogene-
ity effect, where mean methylation measured by array-based
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techniques represents an aggregated signal from a heterogeneous
group of cells. On the contrary, sequencing-based techniques
such as whole genome bisulfite sequencing (WGBS) and reduced
represented bisulfite sequencing enable profiling DNA methy-
lation patterns at single-nucleotide resolution. In sequencing-
based experiments, a single read fragment is guaranteed to orig-
inate from a single chromosome and a single cell, and thus its
methylation pattern represents a discrete DNA methylation hap-
lotype (mHap) [14]. Based on bisulfite sequencing data, Landau
et al. proposed a simple metric, i.e. the Proportion of Discordant
Reads (PDR) to quantify within-sample heterogeneity in cancer
[15]. Along this line, two other mHap-level summary statistics,
i.e. Cell Heterogeneity-Adjusted cLonal Methylation (CHALM) [16]
and methylation concurrence ratio (MCR) [17], were recently pro-
posed. Predictive models using the above statistics are demon-
strated to be more accurate for predicting gene expression than
using mean methylation. Another important characteristic of
DNA methylation is local correlation, i.e. in many regions, DNA
methylations of nearby CpG sites tend to be highly correlated
[18]. Taking this observation into consideration, two statistics,
Methylation Haplotype Load (MHL) [19] and methylation block
score [20] were developed to measure correlated methylations. In
addition to mean methylation, the above DNA methylation sum-
mary statistics at haplotype-level enhanced our understanding on
DNA methylation and its associations with gene transcriptional
activity.

Besides different types of statistics to summarize DNA methy-
lation patterns, the potential region that affects transcriptional
activity is also a debatable topic. Initially, the DNAm analyses
mainly focused on differentially methylated regions (DMRs) in
promoters, but promoter-proximal (5 kb upstream to 1 kb down-
stream of transcription start site, TSS) DMRs only explain around
25% of gene expression variation when using simply a linear
model [21–23]. Alternatively, higher-order features derived from
mean methylation coupled with binomial probability regression
achieved better results, but still only explained 25–49% of gene
expression variation [11]. Recently, a deep learning framework
that uses convolutional neural network (CNN) was shown to
predict promoter activity landscapes from DNA methylomes in
individual tumors [12]. This study included features of distal
regions (±25 kb around the TSS) and focused on the prediction
of histone modifications rather than gene expression [24].

In this study, we developed TRAmHap, a novel deep-learning
framework that combines convolutional and recurrent neural
networks to predict gene expression using features from both
mean methylation and mHap-level summary statistics, in
promoter-proximal (±2.5 kb around TSS) as well as distal regions
(±25 kb around TSS). Our model significantly outperforms
existing methods in terms of prediction accuracy and is capable of
predicting gene expression across tissues and disease conditions.
Our findings suggest that gene expression is not only influenced
by DNAm at regions near TSS (±2.5 kb) but also by long-range
enhancers, particularly in the presence of intra-gene chromatin
interactions.

MATERIALS AND METHODS
Data processing
We utilized various public datasets to conduct our study. Nor-
mal tissue datasets were obtained from the ENCODE project
consortium [25], and comprised of 15 human tissue samples, 7
mouse forebrain samples, 7 mouse heart samples and 5 mouse
liver samples. These samples were profiled with both RNA-seq

and WGBS. In addition, we obtained WGBS and RNA-seq data of
esophageal squamous cell carcinoma (n = 10) and normal sam-
ples (n = 9) from NCBI GEO under accession number GSE149612
[26] (Supplementary Table S1). Enhancer data specific to each tis-
sue was downloaded from EnhancerAtlas 2.0 [27] and FANTOM5
[28]. Super-enhancers were downloaded from SEdb 2.0 [29] and
SEA 3.0 [30]. The preprocessed ChIA-PET data were downloaded
from GEO under accession number GSE90557 [31].

The adapters of bisulfite sequencing data were trimmed using
Trim Galore [32] (version 0.6.2) with default parameters. The
trimmed reads were mapped to the human genome version hg19
using BSMAP with the following parameters: ‘-q 20 -f 5 -r 0 -v 0.05
-s 16 -S 1’. In the case of paired-end sequencing, duplicates were
masked with sambamba [33]. The methylation metrics for CpG
sites were then extracted from the aligned reads using Methyl-
Dackel [34].

DNA methylation metrics
DNA methylation haplotypes were extracted from BAM files using
mHapTools (version v1.1) [14]. Subsequently, the resulting mHap
files were utilized as input to calculate various DNA methyla-
tion metrics, including mean methylation, PDR, CHALM, MHL
and MCR. PDR and CHALM were computed based on reads that
cover a minimum of four consecutive CpGs, while MHL and MCR
considered all reads passing through a specific region. To get
robust signal, missing values were assigned to regions with less
than 10 reads. All DNA methylation metrics were calculated using
mHapSuite (https://github.com/yoyoong/mHapSuite), which is a
Java-based implementation of mHapTk [35].

Architecture of TRAmHap
We developed a deep learning model, named TRAmHap, for pre-
dicting gene expression profiles from DNA methylation data.
TRAmHap comprises two main components, a CNN module and
a recurrent neural network (RNN) module. The input to the model
is a 3-dimensional tensor, representing the genomic data divided
into intervals and calculated features. The CNN module performs
feature extraction using two parallel convolutional layers with
different kernel sizes of 1 × 3 and 1 × 5, respectively. The outputs
from the two convolutional layers are concatenated to form a
combined feature representation, which is then processed by the
RNN module, designed to recognize patterns in the genomic data,
using a series of LSTM layers. The output of the RNN module is
then passed through a fully connected layer to generate the final
prediction. TRAmHap was implemented using Pytorch (v1.9.0) in
Python 3.8.6. We adopted a leave-one-out strategy to predict the
gene expression in individual sample. The training data were split
into training and validation sets with a ratio of 8:2. We used mean
squared error (MSE) as the loss function optimized by the Adam
optimizer with a learning rate of 5e-4, a decay rate of 0.98, and
(β1, β2) = (0.5, 0.998) during each training scheme. We trained the
model for 20 epochs, and the best model selected by the validation
set was saved as the result. Moreover, the model’s backbone can be
frozen and transferred between tissues using transfer learning to
improve its performance, especially for predicting gene expression
levels across tissues and disease conditions.

DNA methylation-associated regulatory potential
To assess the influence of enhancers, we compared the predictive
performance of two models: the full model (50 kb and 5 kb around
TSS) and the reduced model (5 kb). We defined the prediction error
for each gene as the Manhattan distance between the predicted
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and actual values.

D5 = ∣
∣Predicted valueM5K − Observed value

∣
∣ ,

D5+50 = ∣
∣Predicted valueM5K+50K − Observed value

∣
∣ ,

where D5 + 50 and D5 represent prediction errors for the full model
and the reduced model, respectively. A lower value indicated
better prediction. The impact of enhancers was estimated by the
difference between D5 and D5 + 50, i.e.

Vari = D5+50 − D5.

All genes were then sorted in ascending order according to
their Vari. The enhanced group includes genes showing better
prediction performance when the 50 kb region was included in
the model, while the reduced group includes genes showing worse
performance. The non-variable group comprises genes with Vari

near 0, i.e. no significant difference between D5 + 50 and D5.

RESULTS AND DISCUSSION
Selection of DNA methylation metrics as model
inputs
Our study proposes to use DNA methylation patterns around
the TSS to predict of gene expression. We focus on mHap-level
metrics, which not only measure the mean methylation but also
the DNA methylation patterns at the read-level [14]. It is worth
noting that for regions with the same mean methylation, different
DNA methylation patterns reflected by mHaps can exist [36]. For
instance, a region with a mean methylation of 0.5 can exist with
different patterns and can be distinguished by different mHap-
level metrics (Figure 1A). Several mHap-level metrics, including
PDR, CHALM, MCR and MHL (Supplementary Figure S1), have
been shown to be associated with gene expression. However, the
calculation of mHap-level metrics may not be feasible in some
genomic regions due to their low read coverage in WGBS data. For
example, PDR and CHALM only count sequencing reads that cover
at least four consecutive CpG sites, which cover less than 50% of
the regions in a typical WGBS dataset when the window size is
set to 250 bp (Figure 1B). Even with a window size of 2.5 kb, 23%
of the data is still missing. On the other hand, mean methylation,
MHL and MCR all cover more than 85% of the regions, regardless
of the window size used, and thus were selected as possible inputs
to our model. Subsequently, we explored the association between
these DNA methylation metrics and gene expression using a
sample with matched DNA methylation and gene expression
data from ENCODE (ENCBS366XOW). As expected, the group with
the lowest gene expression shows the highest mean methylation
around TSS (Figure 1C). This pattern was also observed in MHL
(Figure 1D), and MCR was even more effective in distinguishing
between the four groups (Figure 1E, Supplementary Figure S2).
Therefore, mean methylation, MHL and MCR represent effective
DNA methylation metrics and thus were selected as the model
inputs.

Framework of TRAmHap
We defined two regulatory regions, namely ±2.5 and ± 25 kb
upstream and downstream of the TSS, respectively, for each gene.
The shorter 5 kb region covers the proximal promoter while the
longer 50 kb region covers both the promoter and long-range
enhancers. These regions were further divided into 20 windows
of equal size. For each window, we calculated three mHap-level
metrics, namely mean methylation, MHL and MCR, resulting in

three matrices of equal dimensions of 20 by 2 (Figure 2A). Using
these matrices as inputs, we developed TRAmHap, a novel deep-
learning framework for predicting gene expression based on DNA
methylation haplotypes (Figure 2B). TRAmHap can flexibly take
one, two or all three metrics as input. The model begins with
a 2-dimensional convolution layer that reshapes input matrix
features into a 1-dimensional sequential array, which is then
followed by two parallel convolution modules with kernel sizes
of 1 × 5 and 1 × 3, respectively. By using kernels of different sizes,
the model can extract features at different scales. All convolution
layers were linked to either a batch normalization layer or a max-
pooling layer by the ReLU activation function. The convolution
modules extract features based on the prior knowledge of locality
and invariance. The output of the convolution layers is concate-
nated and fed into an LSTM module to extract features based on
the sequence of windows. Finally, four fully connected layers are
used to fit and predict gene expressions.

TRAmHap accurately predicts transcriptional
activity within the same tissue
We assessed the performance of TRAmHap using various DNA
methylation metrics as input. To achieve this, we curated a
dataset with matched gene expression and DNA methylation
profiles from three tissue types, including seven heart samples,
seven forebrain samples and five liver samples (Supplementary
Table S1). For each tissue type, we used a leave-one-out cross-
validation scheme, where we cyclically chose one sample as the
test set, and combined the remaining samples into training and
validation sets at an 8:2 ratio. We assessed the model performance
by calculating the Pearson’s correlation coefficient (PCC) between
measured and predicted gene expressions. Our results showed
that TRAmHap models based on mean methylation and MCR
outperformed those based on other metrics or all three metrics
in all three mouse tissue types, with median PCC values of 0.91,
0.87 and 0.86 for heart, forebrain and liver tissues, respectively
(Figure 3A).

We subsequently assessed the performance of TRAmHap when
the genomic regions were partitioned into different numbers of
windows. Larger window size results in fewer windows and a
higher proportion of covered windows, while smaller window size
produces more windows and a lower proportion of covered win-
dows. For each gene, we required at least 90% of covered windows,
or else that gene would be excluded from further analyses. In
human normal tissue dataset, for instance, approximately 10 000
genes were retained when the regions were split into 20 windows,
whereas only 200 genes were retained when the regions were
split into 30 windows (Figure 3B, left panel). Regarding the overall
prediction accuracy, the model with intervals partitioned into 20
windows outperformed that partitioned into 10 windows (paired
Wilcoxon rank-sum test, P-value = 0.018) and 30 windows (paired
Wilcoxon rank-sum test, P-value = 0.011) (Figure 3B, right panel).

In conclusion, these findings demonstrate that mean methy-
lation and MCR are the optimal inputs for TRAmHap for predict-
ing gene expression. As an example, for a mouse heart sample
(ENCBS004ZLN), the PCC between the mean methylation in the
promoter region and gene expression was −0.32 (P < 2.2 × 10−16),
consistent with previous studies (Supplementary Figure S3, left
panel). With the TRAmHap model, the PCC between the observed
and predicted values was 0.94 (Figure 3C, left panel), indicating
an accurate prediction of gene expression. A similar result was
obtained with a brain tissue sample (ENCBS273RVL) (Figure 3C,
right panel).
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Figure 1. Selection of DNA methylation metrics as the model input. (A) For a region with the same mean methylation, three hypothetical sets of DNA
methylation haplotypes are shown. For each set, DNA methylation is quantified by five metrics, including mean methylation, CHALM, MCR, PDR and
MHL. (B) Genome-wide coverage of different DNA methylation metrics. For each gene, 10 windows upstream and 10 windows downstream of TSS were
assessed with window sizes of 0.25 and 2.5 kb. The percentages of windows covered in 13 representative human WGBS samples were shown for 5 metrics.
(C–E) Association of gene expression with DNA methylation metrics. For an ENCODE sample (ENCBS366XOW) with matched RNA-seq and WGBS data,
genes were assigned to four equal-sized groups based on expression quantiles (0–25%, 25–50%, 50–75% and 75–100%). The average profiles of DNA
methylation metrics, including mean methylation (C), MHL (D), MCR (E) are shown.

Figure 2. The architecture of TRAmHap. (A) Two regions, namely 5 and 50 kb around the transcription start site (TSS) of each gene, were divided into
20 non-overlapping windows of equal size, resulting in three sets of 2 by 20 matrices for the calculation of three DNA methylation metrics per window.
These matrices are used either individually or combined as the model input. (B) The framework of TRAmHap is shown, including the pre-processing of
DNA methylation data, feature extraction, model training, and prediction. Details can be found in Materials and methods.

Comparison of TRAmHap with existing methods
We conducted a comparative analysis of TRAmHap against
several existing methods for predicting gene expression from
DNA methylation. The methods included linear regression (LR),

support vector regression (SVR), random forest (RF) and CNN. All
above methods used the same datasets from three tissue types:
seven heart tissue samples, seven forebrain tissue samples and
five liver tissue samples. To ensure a fair comparison, all methods
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Figure 3. Refinement of model input and performance evaluation. (A) Selection the optimal input for TRAmHap. To select the optimal DNA methylation
metrics as model input, the performance of TRAmHap was evaluated with different inputs, including mean methylation, MHL, MCR, combination of
two metrics, and all three together. The performance was assessed by the Pearson’s correlation coefficient between measured and predicted gene
expressions. The significance between different groups were evaluated by Wilcox rank sum test ∗P < 0.05; ∗∗P < 0.01; ns not significant. (B) The left panel
displays the number of covered genes when the regions surrounding TSS were divided into varying numbers of windows. The corresponding predictive
performance is presented in the right panel. (C) Scatter plots of measured and predicted gene expression by the TRAmHap model are shown for two
representative samples. Pearson’s correlation coefficient r and associated P-value are shown for each sample.

were evaluated on the same training and validation sets. For SVR
and RF, we conducted a grid search over a wide range of parameter
combinations and chose the optimal parameters for modeling
and comparison in subsequent results. Detailed information

about the grid search can be found in the supplementary tables
(Supplementary Table S2). TRAmHap outperformed all other
methods on all datasets, as measured by the PCC between
predicted and true gene expression (Figure 4A). Specifically,
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Figure 4. Comparison of TRAmHap with existing methods. (A) The performance of TRAmHap was evaluated using three mouse tissue datasets and
compared with five existing models, including CNN, LR, M2A, SVR and RF. The performance was assessed by the Pearson’s correlation coefficient between
measured and predicted gene expressions. The significance between different groups were evaluated by Wilcox rank sum test ∗P < 0.05; ∗∗P < 0.01;
ns not significant. (B) Scatter plot of measured and predicted gene expression values by TRAmHap and M2A, respectively, in a mouse liver sample
(ENCBS146FGN). Pearson’s correlation coefficient r and associated P-value were shown for each method.

TRAmHap achieved a median PCC of 0.85, explaining approxi-
mately 72% of gene expression variation through DNA methyla-
tion. In contrast, all other methods achieved median PCC values
below 0.8, with classical CNN performing the worst with median
PCC values of 0.47, 0.41 and 0.36 in mouse heart, brain and liver
tissues, respectively. RF showed a more robust performance than
LR, SVR and CNN, but only explained 50% of gene expression
variation (median PCC ≈ 0.74).

In a recent study, the authors developed a deep-learning frame-
work called MethylationToActivity (M2A) [12] that predicts pro-
moter activity by measuring the enrichment of H3K4me3 and
H3K27ac in the ±1 kb region of the TSS (Supplementary Figure S4).
We then tested M2A on samples used in this study by replacing the
histone modification signal with gene expression as the output.
However, M2A exhibited poor accuracy in predicting gene expres-
sion, with median PCC values of 0.57, 0.52 and 0.55 in mouse heart,
brain and liver tissues, respectively. For example, for a mouse
liver sample (ENCBS146FGW), TRAmHap achieved a PCC of 0.90,
while M2A only achieved a PCC of 0.61 (Figure 4B). These findings
suggest that TRAmHap outperforms both basic machine learning
models as well as existing deep-learning models for predicting
gene expression using DNA methylation data.

TRAmHap is predictive of transcriptional activity
across tissues and disease conditions
We further explored whether the proposed model maintains pre-
dictive power when training and testing samples come from
different tissues. We curated a WGBS dataset covering 11 types
of tissues with matched gene expression data (Supplementary
Table S1). As an example, we tested our method on lung tissue
samples using a model trained with all other tissues. Although the
prediction accuracy for gene expression was slightly lower than
that for within-tissue prediction, our model still achieved reason-
ably high accuracy (PCC = 0.89). Similar results are observed when
other tissues are considered as test samples, with a median PCC
of 0.83 (Figure 5A). When using the same training data and input
features, TRAmHap significantly outperforms all other machine
learning methods for the prediction of gene expression (Figure 5A,
P < 0.01, Wilcoxon rank sum test). For example, while random

forest (RF) outperforms other existing methods, it only achieves
a median PCC of 0.72, and the median PCC for the M2A model
is 0.69. We also tested whether transfer learning by adding a
small dataset that shares characteristics with the target dataset
would improve the predictive performance of the model. We first
trained a baseline model using samples from 10 different tissue
types. Then, the model was optimized by fine-tuning with a small
number of samples (1 or 2) from four additional tissue types,
which included heart left ventricle, psoas muscle, esophagus and
spleen. The fine-tuned model was then used to make predictions
for these tissue types. The results showed that the transfer learn-
ing approach significantly improved the model’s ability to predict
gene expression across tissue types (paired Wilcoxon rank sum
test, P-value = 0.0019) (Figure 5B).

Subsequently, we assessed the generalizability of our model
by testing samples from the same tissue but in different disease
states. We obtained a dataset from the GEO database (GSE149612)
comprising normal (n = 9) and cancer (n = 10) tissue samples
from the esophagus. Consistent with previous results, the model
trained with normal samples demonstrated accurate prediction
of gene expression in other normal samples, with a median
PCC of 0.94. Similarly, the model trained with cancer samples
achieved high accuracy in predicting gene expression in other
cancer samples, with a median PCC of 0.88 (Supplementary
Figure S5). Remarkably, the models trained from normal samples
were capable of reasonably predicting tumor samples, despite
different regulatory mechanisms involved, with a median PCC of
0.74. In comparison to RF and M2A (P < 0.01, Wilcoxon rank sum
test), TRAmHap substantially outperformed them (Figure 5C). The
performance of TRAmHap can be further improved by transfer
learning and reach a median PCC of 0.80 (paired Wilcoxon rank
sum test, P-value = 0.00078) (Figure 5D).

Exploring DNA methylation-associated
regulatory potential
The robustness and accuracy of TRAmHap enable us to explore
DNAm-associated regulatory potential in regions surrounding
TSSs. To measure the regulatory potential of a specific region, we
perturbed the test data by replacing summary statistics within the
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Figure 5. TRAmHap predicts transcriptional activity across tissue types and disease conditions. (A) Comparison of TRAmHap with M2A and RF for
prediction gene expression across tissue types. We performed a leave-one-out cross-validation to ensure that the testing tissue was not included in the
training data. (B) Transfer learning improves tissue prediction. We first trained a baseline model using samples from 10 different tissue types. Then,
the model was optimized by fine-tuning with a small number of samples (1 or 2) from four additional tissue types, which included heart left ventricle,
psoas muscle, esophagus and spleen. The optimized model was then used to make predictions for these tissue types. (C) Comparison of TRAmHap
with M2A and RF for prediction gene expression across disease conditions. Esophagus tumor samples were tested with the model that was trained
with nine esophagus normal samples. (D) Transfer learning improves across disease condition prediction. The baseline model was trained with all nine
esophagus normal samples, which was further updated with two esophagus tumor samples, the resulting model was used to predict the other eight
tumor samples. (A–D) The performance was assessed by the Pearson’s correlation coefficient between measured and predicted gene expressions. The
significance between different groups were evaluated by the Wilcox rank sum test. ∗P < 0.05; ∗∗P < 0.01.

region with random values and evaluated the resulting change in
overall predictive accuracy. Larger changes of predictive accuracy
indicate higher regulatory potential of this region. We compared
TRAmHap with RF, which is the best-performing existing method
in mouse forebrain tissue samples (n = 7). Our results show that,
consistent with previous knowledge, the core regions around TSSs
have the highest regulatory potential. Using 5 kb plus 50 kb as
input, we found that masking the 250 bp window around TSSs
reduces TRAmHap’s PCC by 0.25 (Figure 6A). Notably, TRAmHap
recovers regulatory potentials not only in proximal promoter
regions but also in flanking regions as far as 25 kb away from
TSSs (Figure 6B and C), whereas RF mainly relies on features in
the exact window around TSSs, with regions outside 5 kb having
minimal impact on overall prediction accuracy (Figure 6D and E).
These findings are consistent with models using 50 kb as input
(Figure 6F).

Utilization of enhancer by TRAmHap
In our study of the TRAmHap model, we observed that the per-
formance of the model with input intervals of both 50 and 5 kb
was better than the model with reduced input intervals of only
5 kb, resulting in a significant improvement in the Pearson corre-
lation coefficient (PCC) of the predicted effect within the same
tissues. Specifically, the median PCC in mouse forebrain, liver

and heart tissues increased by 0.17, 0.16 and 0.16, respectively
(Supplementary Figure S6). This improvement could be attributed
to the hypothesis that larger regions contain enhancers that
could improve the model’s performance. To test this hypothesis,
we compared the performance of our model with and with-
out inputs of long range region (the TSS ± 25 kb). We ranked
genes based on changes in prediction errors, where the top-
ranked genes had enhanced prediction, bottom-ranked genes
had reduced prediction, and genes in the middle had no sig-
nificant change. In heart tissue, we found that 61% of the top
100 genes with enhanced prediction contained known heart-
specific enhancers [27] (Figure 7A). In contrast, only 14% of the top
100 unaffected genes contained known enhancers. Interestingly,
50% of the top 100 genes with reduced prediction also contain
known enhancers. Similar patterns are also observed in liver
tissue (Figure 7B). In addition to the above mouse tissue specific
enhancer data from the EnhancerAtlas 2.0 database, we down-
loaded the human enhancer data in the FANTOM database with
the same pattern (Supplementary Figure S7A). We also down-
loaded super-Enhancer data from the SEdb 2.0 (Supplementary
Figure S7B) and SEA (Supplementary Figure S7C) databases, which
also had the same effect, but presenting less significant results
than regular enhancers due to their sparsity. Even when 3000
genes were selected, these three groups were well separated,
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Figure 6. DNA methylation-associated regulatory potential. For TRAmHap, to measure regulatory potential in a specific region, a set of perturbed
testing data were generated by replacing summary statistics in the region with random values. The change in overall predictive accuracy compared to
the original model was considered the regulatory potential of this region. For random forest, the weight of each region was directly used as regulatory
potential. Two types of inputs were used, including 5 kb plus 50 kb (A and B, D and E) and 50 kb only (C and F).

which is different from the pattern observed in RF (Supplemen-
tary Figure S8). These results demonstrate that TRAmHap can
effectively capture DNAm patterns in enhancer regions and posi-
tively affect the prediction of gene expression.

As an illustrative example, we examined the prediction perfor-
mance of TRAmHap on the tissue-specific gene Crip2, which is
known to be highly expressed in mouse heart tissue. We found
that the full TRAmHap model, which includes the 50-kb input
region, achieved more accurate predictions of Crip2 expression.
Removing the 50-kb input region significantly increased the pre-
diction error (paired Wilcoxon rank sum test, P-value = 0.016),
resulting in a mean prediction error of 2.21 for the six samples
(Figure 7C). Previous studies have identified three clusters of car-
diac enhancers located within the 50-kb region of the TSS of
Crip2, all of which are located between 2.5 and 25 kb distance
from the TSS locus. We speculate that the enhanced prediction
performance of Crip2 is likely due to the characteristic DNA
methylation patterns in these three clustered regions (Figure 7D).

Based on the above results, we tried to add tissue-specific
enhancer information to the model inputs, i.e. mean methylation,
MCR and enhancer information for each window (‘1’ means that
the window contains enhancers for the gene, ‘0’ means that the
window does not contain enhancers for the gene), and the results
showed that the prediction of the model was slightly improved
by adding this information (Supplementary Figure S9). This
result also shows again that considering enhancer information
in the prediction of gene expression is beneficial to improve the
accuracy of the model. However, we observed that genes with
reduced prediction also contain a small fraction of enhancers,
but the prediction error increased when the 50-kb regions were
added to the model. Enhancers are known to be located far from

promoters and regulate gene expression through long-range
chromatin interactions. One possible explanation for the reduced
prediction in these cases is that some enhancers may be located
within the 50-kb regions of associated genes but regulate genes
outside these loci (Supplementary Figure S10A). To test this
hypothesis, we compared the fractions of intra- and inter-gene
links, defined by chromatin interaction analysis by paired-end-
tag sequencing (ChIA-PET) [31], in gene groups with enhanced,
reduced, or non-variable prediction. The group with enhanced
prediction tends to contain higher fraction of intra-gene links
and lower fraction of inter-gene links. For mouse brain tissue, in
the top 100 genes with enhanced prediction, 87% of them contain
intra-gene links, and 13% of them only contain inter-gene links.
In contrast, of the top 100 genes with reduced prediction, 80%
of them contain intra-gene links, and 20% of them only contain
inter-gene links (Figures 8A and B).For example, Xylb exhibited
reduced prediction accuracy when the 50 kb region was included
in the model (paired Wilcoxon rank sum test, P-value = 0.016)
(Supplementary Figure S10B). This could potentially be attributed
to the absence of intra-locus loops in Xylb (Supplementary Figure
S10C and D). Some genes contain both intra- and inter-gene links,
but genes with reduced prediction tend to be dominated by inter-
gene links (Figure 8C). For instance, Hist1h4h showed a significant
increase in prediction error when the 50 kb regions were added
to the model (paired rank sum test, P = 0.047) (Figure 8D). Within
this locus, there are 201 chromatin contact loops, with inter-gene
links dominating. Specifically, out of the contact loops involving
the 50 kb region but not the 5 kb region, 79% are inter-locus
links (124 inter-locus loops, 32 intra-locus loops) (Figure 8E and
F). However, the RF model did not show such a large difference in
this case (Supplementary Figure S11).
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Figure 7. Impact of enhancers on prediction accuracy. The performances of models with or without 50 kb input were compared. Genes were ranked based
on the changes in prediction errors, so that genes ranked at the top have enhanced prediction, genes ranked at the bottom have reduced prediction, and
genes in the middle were not affected. For each of the three groups, the fraction of genes with tissue-specific enhancers was shown when the different
numbers of top genes were selected in datasets of the heart (A) and liver (B) tissues. When selecting the top 100 genes, the fraction of genes with
enhancers was specifically shown. (C) The prediction errors of the Crip2 gene with or without 50 kb regions were compared and statistical significance
was assessed by paired Wilcoxon rank sum test. (D) An IGV plot of the Crip2 gene locus. Gene expression (TPM), mean methylation and MCR are shown.
Three clusters of heart tissue enhancers were also indicated.

DISCUSSION
Modeling the relationship between DNA methylation and gene
expression is of great importance to understanding its role in tran-
scriptional regulation. However, current strategies that employ
linear models to characterize the mean methylation in promoter
regions and gene expression are oversimplified. In this work, we
addressed this challenge from three aspects. First, we recognized
that DNA methylation patterns can differ in regions with simi-
lar mean methylation levels, and mHap-level summary metrics
can be used to better characterize these patterns. Second, DNA
methylation in enhancer regions is known to be associated with
promoter activity and gene expression, making a model that
encompasses both promoters and enhancers more suitable. At
last, classical machine learning methods, such as linear regres-
sion, are not always effective in analyzing high-dimensional data.

Based on observations described above, we developed a novel
deep-learning framework called TRAmHap, which predicts tran-
scriptional activity by utilizing the characteristics of DNA methy-
lation haplotypes in proximal promoters and enhancers located
up to 25 kb away from TSS. Depending on the DNA methylation
metrics, a variety of models is available within the framework.
While traditional mean methylation provides an aggregated sig-
nal and ignores cell population heterogeneity, DNA methylation

metrics such as PDR, CHALM, MCR and MHL account for the
heterogeneity and capture the patterns of DNA methylation hap-
lotypes. However, PDR and CHALM computations only consider
sequencing reads covering at least four CpG sites, resulting in over
50% of missing values in 5 kb regions around TSS for typical 30×
WGBS samples. Thus, we chose mean methylation, MCR and MHL
as the model inputs In addition, the number of windows is another
critical parameter to consider. A larger window size results in
fewer windows and a higher proportion of covered windows,
while a smaller window size produces more windows and a lower
proportion of covered windows. We examined the performance
of TRAmHap using various window numbers and found that a
window size of 20, covering about 9000 genes, yielded the best
results. Although a window size of 10 covered over 10 000 genes,
the performance of TRAmHap decreased significantly. Thus, a
window number of 20 balances performance and coverage.

TRAmHap outperforms existing machine-learning methods,
such as LR, SVR, RF, classical CNN and M2A. TRAmHap accurately
predicts transcriptional activity and explains 60–80% of the
gene expression variation, a significant improvement over
traditional models such as LR that only explains around 25%
of gene expression variation by using mean methylation in
promoter regions. Although RF can utilize the signal from
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Figure 8. Impact of chromatin interaction on prediction accuracy. Two groups of genes were defined based on changes in prediction errors from models
with or without 50 kb regions. The fraction of genes with intra-gene links (A), with only inter-gene links (B), or with 90% inter-gene links (C) are shown.
(D) The prediction errors of the Hist1h4h gene with or without 50 kb regions were compared and statistical significance was assessed by paired Wilcoxon
rank sum test. (E) In the Hist1h4h locus, the number of intra- and inter-gene ChIA-PET loops was shown. (F) An IGV plot of ChIA-PET links in Hist1h4h
locus.

long-range regions, TRAmHap employs it more efficiently, as
demonstrated by the stronger enrichment of tissue-specific
enhancers and intra-gene chromatin loops in genes with
enhanced prediction when 50 kb regions are included. The
TRAmHap demonstrates strong predictive performance at the
single-sample level, even with limited number of samples. To
predict gene expression of individual genes across samples
would require a significantly larger sample size, particularly
when matched DNA methylation and gene expression data are
considered. To improve the accuracy of individual gene expression
predictions, collecting more datasets or incorporating additional
gene-related features may be beneficial.

The TRAmHap model based on mean methylation and MCR
outperformed other models based on DNA methylation profile
indicators in terms of intra-tissue prediction. This result sug-
gests that the characteristics of DNA methylation haplotypes
contribute to the prediction of transcriptional activity. We believe
that the TRAmHap framework could be further refined to include
additional layers, such as those with attentional mechanisms, to
improve noise tolerance.

CONCLUSIONS
In this study, we developed a new machine-learning framework
to predict gene expression using the features of DNA methylation
in promoters as well as enhancers. This model outperforms exist-
ing models and can predict gene expression in different tissues
and disease conditions. Our model shows that DNA methylation
features can be used to accurately predict gene expression. Also,
we found that gene expression is determined not only by DNAm
in the region near the TSS (±2.5 kb) but also by long-range
enhancers, especially when intra-gene chromatin interactions are
present.

Key Points

• TRAmHap is a novel deep-learning framework that pre-
dicts gene expression by utilizing the characteristics of
DNA methylation haplotypes in proximal promoters and
distal enhancers.

• TRAmHap shows much higher accuracy than exist-
ing machine-learning based methods, by explaining
60% ∼ 80% of gene expression variation across tissue
types and disease conditions.

• Gene expression is determined not only by DNAm in the
region near the transcription start site (±2.5 kb) but also
by long-range regions that are enriched with enhancers.

• TRAmHap can also incorporate tissue-specific enhancer
information in addition to DNA methylation scores,
resulting in improved prediction accuracy.

CODE AVAILABILITY
The code and documentation for TRAmHap are freely available at
https://github.com/SQ-Gao/TRAmHap.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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