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Abstract

Summary: Bisulfite sequencing (BS-seq) is currently the gold standard for measuring genome-wide DNA methyla-
tion profiles at single-nucleotide resolution. Most analyses focus on mean CpG methylation and ignore methylation
states on the same DNA fragments [DNA methylation haplotypes (mHaps)]. Here, we propose mHap, a simple DNA
mHap format for storing DNA BS-seq data. This format reduces the size of a BAM file by 40- to 140-fold while retain-
ing complete read-level CpG methylation information. It is also compatible with the Tabix tool for fast and random
access. We implemented a command-line tool, mHapTools, for converting BAM/SAM files from existing platforms to
mHap files as well as post-processing DNA methylation data in mHap format. With this tool, we processed all public-
ly available human reduced representation bisulfite sequencing data and provided these data as a comprehensive
mHap database.

Availability and implementation: https://jiantaoshi.github.io/mHap/index.html.

Contact: jtshi@sibcb.ac.cn or xqzheng@shnu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is an epigenetic mark that plays an important role
in gene regulation, development and tumorigenesis (Greenberg and
Bourc’his, 2019). Traditional array-based approaches are limited to
measuring mean DNA methylation of individual CpG sites and neg-
lect the within-sample heterogeneity of the profiled cell populations.
Sequencing-based techniques such as whole genome bisulfite
sequencing (WGBS) and reduced representation bisulfite sequencing
(RRBS) are now widely used to measure DNA methylation at single-
nucleotide resolution, which also enables researchers to characterize
DNA methylation patterns at the sequencing read-level. Even when
generated from bulk data, DNA methylation data of a single read
fragment is guaranteed to stem from a single chromosome of a single
cell. Thus, the methylation pattern of CpGs on each fragment repre-
sents a discrete DNA methylation haplotype (mHap) (Shoemaker
et al., 2010). Motivated by this concept, Landau et al. (2014) pre-
sented the concept of the Proportion of Discordant Reads (PDR) to
quantify within-sample tumor heterogeneity, which is one of the
most widely used read-level summary statistics (Teschendorff and
Relton, 2018). Similarly, Guo et al. (2017) proposed the metric of
Methylation Haplotype Load (MHL) to quantify the level of

coordinated methylation. Scherer et al. (2020) systematically bench-
marked six types of heterogeneity scores including PDR, MHL, en-
tropy, epipolymorphism and two newly proposed metrics. Recently,
Xu et al. (2021) introduced a Cell Heterogeneity-Adjusted cLonal
Methylation (CHALM) score which uses DNA mHap patterns to
quantify the functional consequences of DNA methylation.
However, the calculation of mHap-level summary statistics requires
raw sequence alignments, which are usually not publicly available
due to privacy issues and large file sizes.

To overcome these shortcomings, we propose mHap, a novel file
format for DNA methylation bisulfite sequencing (BS-seq) data. It is
designed to interface between DNA mHaps and downstream analy-
ses, including extraction of per-base methylation metrics, identifica-
tion of differentially methylated regions, characterization of
discordant and concordant methylation patterns. We also developed
a Cþþ software called mHapTools for converting raw BS-seq align-
ments (SAM/BAM) generated by popular aligners, such as BSMAP
(Xi and Li, 2009), Bismark (Krueger and Andrews, 2011) and BS-
seeker (Chen et al., 2010), to mHap files. Finally, we collected 3731
publicly available RRBS raw sequencing datasets and corresponding
annotation information to establish a comprehensive mHap
database.
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2 mHap format and mHapTools description

The mHap format file was developed for efficient storage and ma-
nipulation of DNA mHaps. It is a genomic position-based format
with six fields, including the genomic region specified by the first
and last CpG sites in the first three fields, the DNA mHap and the
numbers of reads with given mHaps and strands (Fig. 1A). In the
fourth field, DNA mHaps are represented as binary strings of 0 and
1, where 1 indicates methylated CpG site and 0 indicates unmethy-
lated CpG site. An mHap file can be indexed by Tabix (Li, 2011) to
achieve random and fast retrieval of haplotypes overlapping with a
specified chromosomal region. To demonstrate the features of the
mHap format, we compared it to other formats utilized by existing
BS-seq programs (Supplementary Table S1). For example, BSMAP
(Xi and Li, 2009), MethylQA (Sun et al., 2013), BRAT (Harris
et al., 2010), BRAT-BW (Harris et al., 2012) and METHPIPE (Song
et al., 2013) generate standard BAM/SAM files as output. Bismark
(Krueger and Andrews, 2011), BS-Seeker (Chen et al., 2010) and BS-
Seeker2 (Guo et al., 2013) output BAM files with additional tags to
represent methylation states for CpG and non-CpG sites
(Supplementary Fig. S1). However, BAM files contain raw sequenc-
ing reads and can be used to determine genetic information which is
an important source of individual’s privacy. In most public data
repositories such as GEO (Gene Expression Omnibus) and EGA
(European Genome-phenome Archive), BAM files are treated as raw
data and protected by default without explicit consent from partici-
pants. It is thus widely accepted by the research community that
summary data such as mean methylation is a good balance between
privacy conserving and data sharing. Other related tools such as
Bismark methylation extractor (Krueger and Andrews, 2011),
MethylDackel (Ryan, 2017), CGmapTools (Guo et al., 2018) and
METHCOMP (Peng et al., 2018) output methylation summaries
free of sequence information, including bedGraph, CGmap and
bedMethyl. However, these formats only report aggregated methyla-
tion signal at each cytosine site, and neglect read-level methylation

information. In contrast, mHap is a general DNA mHap format and
retains complete read-level CpG methylation.

To manipulate DNA mHaps in the mHap format, we developed
mHapTools that can parse alignments of SAM/BAM format files
from different platforms, and convert them to mHap files. The
mHapTools is fast and memory efficient for large-size BS-seq data.
Especially, the maximum amount of RAM and running time are
both linearly correlated with BAM file sizes (Fig. 1B and C and
Supplementary Fig. S2). For a typical RRBS BAM file, the processing
time is �10 min for a personal computer with 500 MB of RAM
(Supplementary Fig. S2A and C). For a high coverage WGBS BAM
file of 150 GB, it finishes in 8 h with the maximum memory usage of
�10 GB (Fig. 1B and C). More importantly, the mHap format dra-
matically reduces the size of a BAM file (40- to 140-fold) while
retaining complete read-level CpG methylation information
(Fig. 1D).

To explore how mHap format achieve this significant file size re-
duction, we tested the effects of different procedures in converting
BAM files to mHap files including information reduction, aggrega-
tion and gzip compression (Supplementary Table S2 and Fig. S3). In
information reduction step, DNA mHaps were extracted from BAM
files (Supplementary Fig. S1C). Surprisingly, this step only results in
2-fold file size reduction for RRBS, 4- and 1.3-fold for WGBS and
targeted BS-Seq, respectively. In the aggregation step, reads with the
same haplotypes were merged and the count column was updated to
reflect number of reads with the same haplotypes. This step results
another 3.5-fold reduction in file size for RRBS, 2.5-fold for WGBS
and 20.7-fold for targeted BS-Seq. In particular, samples with higher
coverage benefit more from this step. The last Gzip compression step
introduces additional 6-fold reduction for all three assays. In sum-
mary, three steps together result in 39-fold reduction in file size for
RRBS, 69-fold for WGBS and 148-fold for targeted BS-Seq
(Fig. 1D). We also observed that additional binarization only results
in minimal changes in file size and thus not adopted by current ver-
sion of mHapTools (Supplementary Fig. S4).

To validate the implementation of mHapTools, we next com-
pared mean methylations of all annotated CpG islands derived from
MethylDackel (Ryan, 2017) and mHapTools. Using a chronic
lymphocytic leukemia (CLL) sample as an example, we observed
consistent results by these two methods (Fig. 1E). Using the same
data, we also tested two read-level measurements, PDR and
CHALM, and showed their relationships with mean methylation
(Fig. 1F and G), which are also in accordance with previous results
(Landau et al., 2014; Xu et al., 2021). However, our calculation is
based on the space-saving mHap format files, the processing time
and memory usage are drastically reduced. All functions are
described on mHapTools websites with vignettes illustrating the
basic and advanced features.

3 Applications and data curation

Locally disordered methylation is deemed a hallmark of cancer and
its association with gene expression was extensively characterized in
CLL (Landau et al., 2014). This type of analysis requires access to
DNA mHaps which were usually not available unless raw data were
shared. Our mHap format coupled with mHapTools represents a
framework to store, share and analyze BS-seq data in haplotype-
level (Supplementary Fig. S9). In our previous study, we have dem-
onstrated that extraembryonic ectoderm (ExE) and cancer share
similar DNA methylation landscapes (Smith et al., 2017). We here
conducted a comprehensive analysis between the epiblasts and ExE
cells. Genes with significantly differences in promoter PDR, but not
in mean methylation, show strong enrichment in many developmen-
tal pathways that are repressed in ExE and activated in Epiblasts
(Supplementary Figs S5–S8). These genes might otherwise be missed
using traditional mean methylation-based methods. We further char-
acterized cancer-specific discordant methylation using CCLE dataset
(Ghandi et al., 2019). Interestingly, a significant proportion of these
promoters have no reliable changes in mean methylation, especially
for AML and kidney cancers (Supplementary Figs S10–S12).

Fig. 1. The DNA mHap format. (A) Conversion of a BAM file to the mHap format

file. The left panel shows the IGV view of a typical RRBS BAM file; the middle panel

displays the methylation states in each read, in which black and white circles repre-

sent methylated and unmethylated CpG cytosines, respectively; and the right panel

shows the mHap file format. (B and C) RAM and time consumptions in the process-

ing of WGBS data. BAM files of different sizes were subsampled from a high cover-

age WGBS sample SRX175348. (D) Compression ratios of mHap format for

different types of BS-seq data. (E) Consistency in CpG island-level mean methylation

obtained by mHapTools and MethylDackel, using a CLL sample (SRX885188) as

an example. (F and G) Distributions of PDR and CHALM for human CpG islands

against mean methylation. PDR, CHALM and mean methylation levels were calcu-

lated for 23 228 CpG islands covered by 10 or more reads with at least 4 CpG sites

in each read
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To demonstrate the usage of mHapTools, we processed 3731
human RRBS samples for over 60 tissues across 57 diseases types
with a unified pipeline (Supplementary Methods). Sample annota-
tions, quality control reports, mean methylation as well as mHap
files were organized as a database that is freely accessible for aca-
demic use (http://mhap.sciplus.cloud). The next version of this data-
base will expand significantly to include all publicly available
human WGBS samples. Note that this database is different from the
ASMdb (Zhou et al., 2020), which aims to identify DNA mHap
regions with allele-specific DNA methylation.

4 Conclusion

Here we propose mHap, a novel file format for DNA mHaps. It is
lightweight and efficient to store read-level CpG methylation in-
formation obtained using various BS platforms. The mHap file is
extremely compact in size and supports fast retrieval of mHaps in
specified regions. We also developed mHapTools for manipulat-
ing mHap files, such as converting BAM/SAM files to mHap files,
merging multiple mHap files, and extracting useful information
from mHap files. In the future, more haplotype-level summary
statistics such as those quantifying comethylation will be devel-
oped. With our tool, we created a comprehensive DNA mHap
database without storing genomic information. The mHap for-
mat, together with mHapTools and mHap database, serve as the
building blocks for the analysis of DNA mHaps.
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