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Abstract

Summary: Bisulfite sequencing remains the gold standard technique to detect DNA methylation profiles at single-
nucleotide resolution. The DNA methylation status of CpG sites on the same fragment represents a discrete methyla-
tion haplotype (mHap). The mHap-level metrics were demonstrated to be promising cancer biomarkers and explain
more gene expression variation than average methylation. However, most existing tools focus on average methyla-
tion and neglect mHap patterns. Here, we present mHapTk, a comprehensive python toolkit for the analysis of DNA
mHap. It calculates eight mHap-level summary statistics in predefined regions or across individual CpG in a
genome-wide manner. It identifies methylation haplotype blocks, in which methylations of pairwise CpGs are tightly
correlated. Furthermore, mHap patterns can be visualized with the built-in functions in mHapTk or external tools
such as IGV and deepTools.

Availability and implementation: https://jiantaoshi.github.io/mhaptk/index.html.

Contact: jtshi@sibcb.ac.cn or xqzheng@shnu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is an essential epigenetic regulatory mechanism
that plays critical role in many biological processes, including em-
bryonic development (Greenberg and Bourc’his, 2019), tumorigen-
esis (Blewitt et al., 2019) and aging (Unnikrishnan et al., 2019).
Mammalian DNA methylation predominantly occurs at CpG sites.
Bisulfite sequencing (BS-seq), including whole genome bisulfite
sequencing (WGBS) and reduced representation bisulfite sequencing,
is the gold standard technique to detect DNA methylation profiles at
single-nucleotide resolution. The DNA methylation status of CpG
sites on the same fragment represents a discrete methylation haplo-
types (mHap) (Shoemaker et al., 2010). The mHap-level metrics
characterize DNA methylation patterns rather than average methy-
lation. Based on mHap-level patterns, methylation entropy was
defined to assess the variability of DNA methylation (Xie et al.,
2011). The Proportion of Discordant Reads (PDR) was proposed to
measure intra-sample heterogeneity (Landau et al., 2014). Recently,
Cellular Heterogeneity-Adjusted cLonal Methylation (CHALM)
(Xu et al., 2021) and methylation concurrence ratio (MCR) (Shi

et al., 2021) were demonstrated to explain gene expression variation
better than average methylation. Furthermore, the mHap-level pat-
terns show promising translational potentials. For example, DNA
methylations of adjacent CpG sites were found to be co-methylated
and form methylation haplotype blocks (MHBs) (Guo et al., 2017).
This co-methylation pattern can be quantified by methylated haplo-
type load (MHL) and methylation block score (MBS) (Liang et al.,
2021), both of which preserve a higher signal-to-noise ratio than
average methylation in early cancer detection.

However, the tools for analyzing DNA methylation haplotypes
are limited. One tool of this kind is RLM, but it only calculates PDR
and entropy, and does not support a plot interface. Besides, it takes
aligned BAM/SAM files as input, which is prohibitively large in size
for large-scale BS-seq analysis (Hetzel et al., 2021). Previously, we
have developed a novel mHap format, which reduces the size of a
BAM file by up to 140-fold while keeps all mHap-level information
(Zhang et al., 2021). It is also compatible with the Tabix tool for
random and fast access (Li, 2011). Furthermore, the mHap format
file contains no genetic information and can be shared as the CpG-
level mean methylation file, which poses minimal risk to an
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individual’s privacy. Here, we further developed mHapTk, a com-
prehensive toolkit for the analysis of DNA methylation haplotypes
based on mHap format.

2 mHapTk description

mHapTk takes mHap files as standard input, which can be con-
verted from BAM files using mHapTools (Zhang et al., 2021).
Functions in mHapTk can be assigned into three categories, visual-
ization, MHB discovery and calculation of mHap-level summary
metrics (Fig. 1, Supplementary Fig. S1).

For a given region, mHapTk visualizes the read-level methylation
statuses as a tanghulu plot (Guo et al., 2018) (Supplementary Fig.
S2A). Reads with the same methylation pattern can be optionally
stacked with its occurrence number shown beside (Supplementary
Fig. S2B). For a region with large number of reads, a given number
(20 by default) of mHaps can be simulated to maximize the likelihood
given the observed sequencing reads (Supplementary Fig. S2C).
Alternatively, mHap-level information can be shown as a heatmap
(Supplementary Fig. S2D, upper panel). The co-methylation levels of
pairwise CpGs are measured by linkage disequilibrium (LD) R2, cal-
culated from individual reads rather than mean methylation (Guo
et al., 2017). Note that we used signed R2 to distinguish positive and
negative correlations (Supplementary Fig. S2D, lower panel). The
combination of these two plots is termed mHapView in mHapTk. It
also implemented a de novo MHB discovery tool that identifies local-
ly co-methylated regions across the genome. Using a public dataset of
esophageal squamous cell carcinoma as an example (Cao et al.,
2020), mHapTk identified 11 112 MHBs, which can be potentially
used for non-invasive cancer detection (Supplementary Fig. S3). For a
set of regions, typically defined by a BED file, mHapTk calculates
eight mHap-level summary statistics, i.e. average methylation,

CHALM, PDR, MHL, MCR, Entropy, MBS and signed LD R2

(Supplementary Table S1). Furthermore, the above mHap-level
metrics can also be calculated in terms of individual CpG sites across

the genome, resulting in files in bedGraph format, which can be used
in combination with IGV (Thorvaldsdottir et al., 2013),

pyGenomeTracks (Lopez-Delisle et al., 2021) and WashU browser
(Li et al., 2022) for visualization. For instance, CASC9 is upregulated
in esophageal cancer, which is potentially explained by decreased

CHALM PDR, and MBS, as well as the presence of MHBs in the pro-
moter region (Supplementary Fig. S4). The bedGraph files generated

by mHapTk can be converted to bigWig files and used by deepTools
(Ramirez et al., 2014) for visualization (Supplementary Fig. S5).
Example outputs of mHapTk have been described with more details

in Supplementary Table S1–S6.

3 Application to real datasets

We used mHapTk to explore the potential association between
DNA methylation patterns and gene expression in lung cancer cell

lines from the CCLE dataset. We focused on promoters with signifi-
cant changes only in mHap-level metrics but not mean methylation.
For instance, promoters were assigned into different groups accord-

ing to changes in mean methylation and changes in DNA methyla-
tion entropy between two subtypes of lung cancer, i.e. non-small cell
lung cancer and small cell lung cancer (Supplementary Fig. S6).

Specifically, four groups were defined: gene promoters with signifi-
cant changes in both mean methylation and entropy (Supplementary

Fig. S6A), significant changes in entropy only (Supplementary Fig.
S6B), significant changes in mean methylation only (Supplementary
Fig. S6C) and those with no significant changes in either mean

methylation or entropy (Supplementary Fig. S6D). Interestingly, the
association between DNA methylation entropy and gene expression

is statistically significant regardless of the change in mean methyla-
tion (odds ratio¼610.64, p-value < 2.2e�16). Besides entropy,
PDR, CHALM and MBS also explain gene expression variation in-

dependent of mean methylation (Supplementary Fig. S7–12). These
results demonstrate that mHapTk has the potential to uncover a

novel association between DNA methylation patterns and gene ex-
pression. Finally, we benchmarked the running time of mHapTk
and showed that it was computationally efficient for typical WGBS

samples (Supplementary Fig. S13).

4 Conclusion

Here, we present mHapTk, a novel software for manipulating
mHap data. Using mHap format data as standard inputs, it sepa-

rates the steps of pre-processing and data mining when dealing with
BS-seq data. Coupled with mHapTools, it streamlines the analysis
of DNA methylation haplotypes. Given the tools in mHapTk, it will

have broad application in the fields of gene regulation and biomark-
er discovery.
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Fig. 1. A schematic diagram of mHapTk. The pre-processing steps output mHap

files that are used as standard input in mHapTk. There are five sub-commands in

mHapTk, including ‘tanghulu’, ‘R2’, ‘MHBDiscovery’, ‘stat’ and ‘genomeWide’.

The example outputs of each command are shown in a concise way
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