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SUMMARY

In heterogeneous tumors, adjacent CpG sites form methylation haplotype blocks (MHBs), genomic regions

where methylation status reflects local epigenetic concordance. While MHBs have been implicated in gene

dysregulation, their pan-cancer dynamics and clinical relevance remain unclear. We profiled 110 primary tu-

mors across 11 common solid cancer types, identifying 81,567 MHBs. These MHBs exhibit high cancer-type

specificity, with enrichment in regulatory elements. Integrative bulk and single-cell analyses reveal that MHBs

associate with gene expression independently of mean methylation changes. Moreover, pan-cancer priori-

tization of MHB-associated differentially expressed genes highlights their roles in oncogenic pathways

such as the G2/M checkpoint, MYC targets, and E2F signaling. Inter-tumor heterogeneity links MHB discor-

dance to driver mutations and inflammatory pathways. Finally, we demonstrate that MHBs serve as effective

biomarkers for cancer detection, performing competitively to existing methods. This resource positions

MHBs as multimodal epigenetic regulators, bridging tumor heterogeneity, transcriptional control, and liquid

biopsy diagnostics.

INTRODUCTION

Abnormal DNA methylation is a characteristic epigenetic feature

of cancer, playing an essential role in cancer initiation, progres-

sion, and drug resistance.1 DNA methylation regulators, such as

DNMT3A and TET2, are recurrently mutated in acute myeloid

leukemia with a population frequency of 26% and 10%, respec-

tively.2 Loss of TET function was shown to promote lung cancer

development through impaired demethylation.3 Targeting DNA

methylation alterations, using inhibitors of DNA methyltrans-

ferases4 or CRISPR-based epigenetic editing,5 represents a

promising cancer therapeutic strategy.6 Characterizing aberrant

DNA methylation in cancer is of great importance to develop

novel therapeutic targets.

Cancer DNA methylation profiles demonstrate a unique

pattern characterized by global hypomethylation across the

genome, accompanied by focal hypermethylation at specific

CpG islands (CGIs). This epigenetic signature contrasts mark-

edly with that of normal cells, which maintain broad genomic

methylation while exhibiting hypomethylation at CGIs.7

Genome-wide DNA hypomethylation in cancer predominantly

occurs within partially methylated domains (PMDs), which are

genomic regions characterized by their association with the nu-

clear lamina and late replication timing.8 Hypermethylation of

promoter-associated CGIs was demonstrated to repress

tumor suppressor gene expression, thereby facilitating tumori-

genesis.9 According to the distribution of mean methylation,

the genome has been segmented into potential functional ele-

ments, including unmethylated regions (UMRs), low-methylation

regions (LMRs), PMDs, and high-methylation regions (HMRs).10

Notably, LMRs serve as regulatory elements that recruit cell

type-specific transcription factors.11 The characterization of

these DNA methylation-associated regulatory elements, such

as LMRs and PMDs, has significantly advanced our understand-

ing of the roles of DNA methylation in maintaining the identities of

cancer cells.12
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Sequencing-based techniques such as whole-genome bisul-

fite sequencing (WGBS) have emerged as widely adopted

methods for measuring DNA methylation at single-nucleotide

resolution on individual sequencing reads.13 Building on this,

proportion of discordant reads (PDR) has been introduced to

measure the degree of epigenetic heterogeneity within tumor

samples,14 demonstrating superior capability in explaining

gene expression variation in chronic lymphocytic leukemia

compared to average methylation. In contrast to traditional ana-

lyses that focus on mean methylation levels across cell popula-

tions,15 WGBS enables the identification of DNA methylation

haplotypes (mHaps), defined as the patterns of CpG methylation

on individual DNA fragments.16 Importantly, this approach al-

lows for the characterization of intra-sample heterogeneity, a

key feature of cancer that manifests at both genetic and epige-

netic levels.17 Single-cell methylation studies have recently pro-

vided unprecedented opportunities to evaluate cell type-specific

methylomes, although these analyses predominantly focus on

mean methylation levels at individual CpG sites.18–20 Building

upon the concept of mHaps, several metrics have been devel-

oped to quantify epigenetic heterogeneity. In addition to PDR,

methylation concurrence ratio21 further quantifies the fraction

of unmethylated CpGs within partially methylated reads,

providing a complementary perspective on methylation patterns

and an insight into the relationship between DNA methylation

and gene regulation. The characterization of mHap patterns

has thus emerged as a powerful approach for investigating the

regulatory roles of DNA methylation, particularly in cancer devel-

opment and progression.22

Within genomic regions exhibiting heterogeneous mHaps,

adjacent CpG sites may display co-methylation patterns, which

can be identified through linkage disequilibrium analysis.23

These regions containing tightly coupled CpG sites are termed

methylation haplotype blocks (MHBs), analogous to the haplo-

type blocks observed in genomic data. MHBs have demon-

strated significant potential as biomarkers for cancer detection

and tissue-of-origin determination in plasma-derived DNA

methylation data.24,25 Previous research has indicated that

CpG sites within individual MHBs typically exhibit highly syn-

chronized methylation states, largely independent of tissue

type or disease condition.26 However, subsequent studies

have revealed the existence of tissue-specific MHBs, which

are predominantly enriched in regulatory elements crucial for

maintaining tissue identity.27,28 Despite these advances, the dy-

namic nature and potential functional roles of MHBs in human

cancers remain largely unexplored.

Our previous study,27 focusing on normal tissue MHBs, relied

on curated datasets from diverse public sources, potentially

introducing variability due to batch effects and biological hetero-

geneity. Currently, primary tumor DNA methylation data are

mostly derived from European and American populations and

are profiled using Infinium DNA methylation arrays. For example,

the large-scale projects, The Cancer Genome Atlas (TCGA),29

covered tens of thousands of samples. The demand for WGBS

profiles to identify MHBs of tumors is particularly high for under-

represented populations, particularly for Chinese patients. To

address these gaps, we performed WGBS on 110 solid tumors

spanning 11 cancer types from Chinese individuals. Our study

establishes a pan-cancer MHB atlas, revealing their regulatory

associations, pathway linkages, and clinical potential as liquid

biopsy biomarkers. This resource advances understanding of

methylation-mediated oncogenesis while providing tools for

early cancer detection development.

RESULTS

Identification of MHBs in 11 common solid cancer types

We analyzed 11 common solid cancer types (Figure 1A), which

collectively represent 48% of new cancer cases worldwide30

and 79% of new cases in China.31 These types included head

and neck squamous cell carcinoma (HNSC), thyroid carcinoma

(THCA), non-small cell lung cancer (NSCLC), breast carcinoma

(BRCA), esophageal carcinoma (ESCA), liver hepatocellular car-

cinoma (LIHC), stomach adenocarcinoma (STAD), pancreatic

carcinoma (PACA), colon adenocarcinoma (COAD), ovarian se-

rous adenocarcinoma (OV), and cervical and endocervical can-

cer (CESC). WGBS was performed on fresh-frozen tumor sam-

ples (n = 9–11 per cancer type) across 11 cancer types,

yielding a total of 110 samples. After read deduplication, the

samples achieved a median sequencing coverage of approxi-

mately 15-fold (Table S1).

To enhance MHB detection sensitivity, sequencing reads from

the same cancer type were pooled to increase coverage depth.

MHBs were defined as genomic regions where adjacent CpGs

exhibit correlated methylation patterns. By modeling CpGs as

‘‘epialleles,’’ we quantified co-methylation using linkage disequi-

librium (LD) R2 to assess methylation concordance across indi-

vidual DNA strands rather than population-averaged levels.26

For example, when two CpG sites are covered by 52 reads,

with predominantly methylated (n = 13) or unmethylated (n =

36) states, they demonstrate high correlation (LD R2 = 0.75,

p < 0.001; Figure 1B). We implemented a seed-and-extend

algorithm in the mHapSuite tool32: starting with five consecutive

CpGs exhibiting significant high pairwise correlation (LD

R2 > 0.5), we iteratively expanded the window by adding adja-

cent CpGs meeting the same threshold until no further exten-

sions were possible.

Across 11 cancer types, we identified 191,395 MHBs with at

least 5 CpGs required per block (Figure 1C; Table S2). Among

the analyzed cancer types, gastrointestinal cancers such as

ESCA, STAD, and COAD demonstrate a higher frequency of

MHBs, and such a pattern is independent of the sequencing

depth (Figure S1A). Considering that some MHBs are shared

by different cancer types, we unionized them to obtain a total

of 81,567 non-redundant MHBs at an average length of 107 bp

(Figure S1B), 40.65% of which were found at promoter regions

(Figure 1D). These regions were significantly enriched in known

regulatory regions (permutation test, p < 0.001), even after con-

trolling for confounding factors such as promoters and CGIs

(Figure S1C). These non-redundant MHBs were further assigned

into 16 non-overlapping clusters, including 11 cancer type-spe-

cific clusters and 5 common clusters shared by two or more can-

cer types (Figure 1E; Table S3). The cluster assignment was

clearly driven by co-methylation rather than average methylation

(Figures S1D and S1E), with consistent results at individual tumor

resolution (Figure S2). Notably, ∼50% of MHBs identified in
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single tumors lacked overlap with cancer-type MHBs, high-

lighting inter-tumoral heterogeneity (Figure S3).

To validate the identified cancer MHBs, we analyzed

independent public WGBS and reduced representation bisulfite

sequencing (RRBS) datasets of colorectal cancer (CRC, n =

19),26,33 esophageal squamous cell carcinoma (ESCC, n =

10),34 and LIHC (n = 9)35–37 samples (Table S4). As expected,

the MHBs identified in this study showed substantial overlap

with those from external datasets for all three cancer types

(Figures S4A–S4C; Table S5). For example, 52.56% (n =

12,300) of ESCA MHBs identified in this study were also found

in a public dataset of ESCC (Figure S4B). Similarly, we compared

MHBs called in this study to those from our pan-cancer study38

that profiled 10 cancer types using RRBS and found cancer

type-specific enrichment (Figure 1E; Table S6). Previously, we

have shown that the placenta shares a DNA methylation land-

scape with human cancers,7 and consistent with our previous

findings, here we showed that placental MHBs tended to overlap

within clusters shared by multiple cancer types (Figures 1E and

S4D; Tables S4 and S7).

Cancer type-specific MHBs can result from either cancer or

tissue specificity. To clarify these two possibilities, we compared

cancer type-specific MHBs to those identified in normal tissues

by LOLA enrichment39 (Figures 1F and S4E; Table S8). It shows

that six cancer types have highest overlap percentages with cor-

responding normal tissues, including BRCA (7.99%), COAD

(15.49%), HNSC (8.17%), LIHC (12.96%), OV (11.71%), and

THCA (12.04%). Nonetheless, the majority of cancer type-spe-

cific MHBs in all cancers represent characteristics of cancer

(Figure S5).

Cancer MHBs are enriched in accessible chromatin

regions

Given the significant enrichment of MHBs in regulatory regions, we

examined their overlap with assay for transposase-accessible

chromatin using sequencing (ATAC-seq)-defined open chromatin

regions from TCGA.40 In most cancer types analyzed, more than

30% of MHBs overlapped with accessible chromatin regions

(Figure 2A), which are statistically significant compared to random

regions (permutation test, p < 0.001) (Figure S6A), indicative of

A

B

C D

E F

Figure 1. Identification of MHBs in cancers

(A) Cancer types included in this study. Abbreviations and numbers of sequenced WGBS samples were indicated.

(B) Representative MHBs in colon cancer (chr1: 1,067,442–1,068,291). Top: DNA methylation status of individual fragments (black: methylated CpGs; white: un-

methylated CpGs). Middle: mean signed LD R2 between adjacent CpGs. Bottom: pairwise signed LD R2 between CpG sites. The p value was calculated using a

binomial test.

(C) Number of MHBs identified in each cancer type.

(D) A pie chart illustrates the proportion of MHBs annotated to promoter, exonic, intronic, and intergenic regions.

(E) Assignment of MHBs into 16 non-overlapping clusters, including data from in-house samples, fresh-frozen tissues (GSE230193), and public tumor datasets.

(F) Cancer-specific MHB cluster enrichment in corresponding normal tissues. Enrichment analysis performed using LOLA package with the union of MHBs as the

background. Black rectangles indicate top-ranked significant enrichment (p < 0.05); gray indicates non-significant results.
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regulatory roles of MHBs in cancer. It is known that segmented

DNA methylation statuses such as UMRs and LMRs are enriched

in active regulatory elements.11 We thus annotated cancer MHBs

with segmented DNA methylation states, including UMRs, LMRs,

PMDs, and HMRs. It shows that MHBs are mainly located in UMRs

and PMDs, together representing around 60% of MHBs in each

cancer type (Figure 2B). While methylation states were defined

solely by mean methylation levels, with PMDs comprising a sub-

stantial portion of the cancer genome (Figure S6B), region-set

enrichment analysis revealed cancer type-specific enrichment of

MHBs in LMRs and PMDs (Figures 2C and 2D) but not in UMRs

or HMRs (Figures S6C and S6D).

We then performed enrichment analysis of open chromatin re-

gions in MHBs across different DNA methylation states, control-

ling for region size and methylation levels. Each methylation state

was stratified by MHB presence. MHB-containing regions

showed substantially higher open chromatin enrichment across

all methylation states, including UMRs and LMRs (Figure 2E). For

example, at mean methylation of 0.05, ATAC-seq peaks covered

55.48% and 74.25% of CpG sites in MHB-containing UMRs and

LMRs, respectively, compared to 32.5% and 58% in regions

without MHBs. This pattern was consistent across all cancer

types examined (Figure S7), suggesting that MHBs function as

regulatory elements associated with DNA methylation patterns

rather than mean methylation in human cancers.

To investigate the role of MHBs in long-range regulation, we

analyzed chromatin interaction analysis by paired-end tag

sequencing (ChIA-PET) data, focusing on breast cancer as a

model.41 In MCF-7 breast cancer cells, Pol II ChIA-PET tags

showed higher enrichment in breast cancer MHBs (40.06-fold)

compared to normal MHBs (28.17-fold). Conversely, in non-ma-

lignant MCF-10A breast epithelial cells, Pol II ChIA-PET tags

were more enriched in normal breast tissue MHBs (60-fold)

than in cancer MHBs (53.62-fold) (Figures 2F and S8A). We

then classified long-range chromatin contacts into 10 groups

based on forward and reverse tag overlap with UMRs, LMRs,

PMDs, and HMRs. Region-set enrichment analysis revealed

that LMR-mediated long-range contacts showed the highest

context-specific enrichment in MHBs (permutation test,

p < 0.001; Figure S8B).

A B C

D E F

Figure 2. Cancer MHBs are enriched in accessible chromatin regions

(A) Overlapping of cancer MHBs with regions of open chromatin in matched cancer types. ATAC-seq peaks were defined previously and downloaded from NCI’s

Genomic Data Commons.

(B) Annotation of MHBs to regions of DNA methylation states, including UMRs, LMRs, PDR, and HMRs.

(C and D) The enrichment of MHBs in LMRs and PMDs, respectively. Enrichment test was performed by R package LOLA, with the union of MHBs serving as the

background set. The resulting adjusted p values for significant enrichment were ranked across all cancer types (FDR < 0.01). Non-significant results are shown in

gray.

(E) Genomic regions with MHBs are more enriched in regions of open chromatin when controlling for mean methylation levels. The enrichment score was

calculated as the percentage of CpGs covered by open chromatin regions.

(F) Enrichment of MHBs in ChIA-PET in a disease status-specific manner. The enrichment score was calculated as the ratio of observed to expected overlaps

between MHBs and ChIA-PET regions with permutation test.
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A B C

D E

F G

Figure 3. Cancer MHBs are associated with dysregulation of gene expression

(A) Annotation of MHBs to DMRs. Hyper, hyper-DMR; Hypo, hypo-DMR; NC, no significant change; ND, not determined.

(B and C) The enrichment of MHBs in hyper- and hypo-DMRs, respectively. Enrichment test was performed by R package LOLA, using the union of MHBs as the

background. The resulting adjusted p values for significant enrichment were ranked across all cancer types (FDR < 0.01). The black rectangle highlights the top

one. Non-significant results are shown in gray.

(D) Association of MHBs and dysregulation of gene expression in ESCC. For a dataset of ESCC (GSE149612) with 10 tumor and paired 10 normal WGBS and

RNA-seq samples, DMRs were identified using Metilene (FDR < 0.05 and Δbeta > 0.1). ESCC MHBs (n = 27,497) were identified using mHapSuite. The iden-

tification of potential genes regulated by MHBs and DMRs using rGREAT with default parameters. Meanwhile, the DEGs (n = 2,769) between ESCC and adjacent

normal tissue were identified by Wilcoxon rank-sum test (fold change > 2 and FDR < 0.05). Genes without DMRs were used to construct a 2× 2 contingency table

(legend continued on next page)
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Cancer MHBs are associated with dysregulation of gene

expression

Differentially methylated regions (DMRs) are routinely utilized to

characterize dynamic changes in DNA methylation, for example,

by comparing cancer and normal samples. We therefore

explored whether DMRs were covered by cancer MHBs, which

are not necessarily differentially methylated in cancer compared

to normal tissues. Over 50% of MHBs overlapped with hyper- or

hypomethylated DMRs in most cancer types, except BRCA and

THCA (Figures 3A and S9). Cancer-specific MHBs showed sig-

nificant enrichment in hypermethylated DMRs in 7 cancer types

(Figure 3B) and stronger cancer specificity in hypomethylated

DMRs across 9 cancer types (Figure 3C).

To assess MHB-associated gene regulation independent of

DMRs, we analyzed matched RNA sequencing (RNA-seq) and

WGBS data from ESCC (GSE149612).34 We identified 1,069

genes without DMRs (Δbeta > 0.1 and false discovery rate

[FDR] < 0.05), out of which 153 genes were differentially ex-

pressed. Fisher’s exact test demonstrated that genes with

ESCC MHBs are more likely to be upregulated (p = 2.56 × 10− 2;

Figure 3D). Among 22 differentially expressed genes (DEGs) with

MHBs but not DMRs, all were significantly upregulated (Figure 3E).

Given the regulatory roles of MHBs, we predicted regulators

that potentially bind to MHBs and regulate gene expression, by

utilizing transcriptional regulatory networks curated in the

CollecTRI database.42 Of the 1,186 transcriptional regulons in

this database, 140 were significantly enriched in ESCC MHBs

(FDR < 0.05), as assessed by testing for enrichment of their

target genes within MHBs using the rGREAT tool.43 Regulatory

activity analysis further identified 52 regulators with the most sig-

nificant activity differences between ESCC and normal esoph-

agus samples (p < 0.05; Figure 3F). Regulators with increased

activity were enriched in two key tumorigenic pathways: the

G2/M checkpoint (MYC, HIF1A, E2F1, E2F3, E2F4, EWSR1,

and CTCF) and WNT signaling (CTNNB1, MYC, SMAD4, and

TP53). Chromatin immunoprecipitation sequencing (ChIP-seq)

data confirmed the increased activity of the core transcription

factor KLF5 in ESCC (Figure 3G).44

Validation of colon cancer MHBs with single-cell data

Single-cell bisulfite sequencing (scBS-seq) enables the charac-

terization of epigenetic heterogeneity at the individual cell level.

By filtering out CpG sites with allele-specific methylation, each

chromosome from a single cell can be modeled as two DNA

mHaps, one from the plus strand and the other from the minus

strand. With this assumption, CpG site-level methylation can

be converted to single-cell mHaps (sc-mHaps), typically for

more than 95% of covered CpG sites (Figure 4A, upper). A key

advantage of scBS-seq is the ability to measure LD between

long-range CpG sites, even in the presence of missing values

in between (Figure 4A, bottom).

To validate bulk-derived cancer MHBs and their potential reg-

ulatory roles, we analyzed a CRC dataset20 that profiled DNA

methylation and gene expression simultaneously at single-cell

resolution. After data quality control, the single-cell methylation

dataset comprised cells from five groups: primary tumor (PT,

n = 581), lymph node metastasis (LN, n = 346), liver metastasis

(n = 144), post-treatment liver metastasis (n = 115), and normal

colon cell (n = 93) (Table S9). With this dataset, we reconstructed

chromosome-level DNA mHaps, which were used for the identi-

fication of MHBs. For instance, two MHBs were identified in sin-

gle cells at one locus (chr1: 3,229,375–3,230,473), and they

largely overlapped with those identified from COAD bulk sam-

ples (Figure 4B). Additionally, MHBs identified from different

types of malignant cells shared a substantial proportion, sug-

gesting the presence of robust colon cancer-associated MHBs

(Figure 4C; Table S10). Using all malignant cells, we have identi-

fied 24,087 MHBs (Table S10), covering 37.02% (n = 8,818) of re-

gions identified in bulk WGBS (Figure S10). We then assessed

the enrichment specificity by conducting a comparative analysis

between MHBs identified from single-cell data of primary tumors

and those derived from bulk sequencing across 11 different

primary cancer types. LOLA enrichment analysis demonstrated

that these regions are specifically enriched in COAD bulk

MHBs with the highest odds ratio (odds ratio = 2.99,

FDR < 1.00 × 10− 300; Figure 4D).

Extensive research has established a well-documented in-

verse correlation between promoter methylation and gene

expression levels. To further investigate the regulatory function

of MHBs, we categorized promoters by their mean methylation

levels in single cells: low (<0.2), high (>0.8), and intermediate

(0.2–0.8). Genes with MHBs showed significantly higher expres-

sion than those without MHBs across all methylation categories

(p < 2.22× 10− 16; Figure 4E). Among genes containing promoter

MHBs, increased MHB methylation correlated with reduced

expression in both intermediate- (p = 5.3 × 10− 3) and low-

(p < 2.22 × 10− 16) methylation groups (Figure 4F).

We continued to investigate the association between MHBs

and DEGs, while controlling for changes in mean methylation

levels. Comparing cells from primary tumors and normal tissues,

we identified 354 DEGs that were not associated with any DMRs.

These genes harboring MHBs tended to be upregulated (odds

ratio = 1.67, p = 0.03; Figure 4G, left). Similar results were

observed when comparing cells from lymph node metastasis

and normal tissue (odds ratio = 1.78, p = 3 × 10− 3; Figure 4G,

right). We next focused on upregulated genes harboring MHBs

in promoters, finding that 42 genes were shared between cells

from primary sites and lymph nodes (Figure 4H). These genes

that separates each gene into one of four categories based on two factors, i.e., status of MHB and differential expression. Statistical significance was evaluated

by Fisher’s exact test.

(E) A heatmap shows the mean methylation and expression of upregulated genes that also contain MHBs.

(F) A heatmap shows the transcription factor (TF) activities between ESCC and normal esophageal tissues. TF activities were estimated by decoupleR using RNA-

seq data and compared using Student’s t test. Significant regulators (p < 0.05, n = 52) are shown, with G2/M checkpoint and WNT signaling genes highlighted in

red and green, respectively. MYC, involved in both pathways, is highlighted in red with a green asterisk (*).

(G) KLF5 binding profiles from ESCC TE5 cell line ChIP-seq data. MHB regions were classified as ESCC tumor-specific (n = 20,778), normal-specific (n = 10,501),

or shared (n = 7,368). Random genomic background (n = 27,497) was generated by ‘‘bedtools shuffle’’ function based on ESCC MHBs.
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Figure 4. Validation of cancer MHBs and their associated regulatory role using single-cell data

(A) Schematic of single-cell DNA methylation haplotype (sc-mHap). Top: binary classification of CpG mean methylation (methylated: >0.9; unmethylated: <0.1) to

generate sc-mHaps. Bottom: representative mHap patterns across 15 single cells.

(B) An example of COAD MHB that was also identified in region (chr1: 3,229,375–3,230,473) using CRC single-cell data.

(C) Overlap of MHBs identified across different single-cell sample types.

(D) Enrichment analysis of primary tumor single-cell MHBs against bulk sample MHBs from 11 cancer types using LOLA, with pan-cancer MHBs as the

background.

(legend continued on next page)
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were mainly enriched in cancer-associated pathways, including

MYC targets and the G2/M checkpoint (Figure 4I). These genes

were activated during cancer initiation, progression, and metas-

tasis while exhibiting stable DNA methylation (Figure 4J). This

conclusion was further supported by data from TCGA profiling

COAD at different stages (Figure 4K), which identified CBX3,

associated with disease-free survival (hazard ratio = 1.7, p =

3.5 × 10− 2) and potentially regulated by MHBs (Figure 4L).

Cancer MHBs are associated with DEGs in pan-cancer

As demonstrated in ESCC and COAD using bulk and single-cell

data, their MHBs are associated with DEGs, even for genes

without annotated DMRs. To validate this observation across

cancer types, we performed an integrative analysis of TCGA

data for samples available with matched DNA methylation and

gene expression profiles. As a sanity check, we tested the

enrichment of DEGs in DMRs using the rGREAT tool. Consistent

with previous studies,7 genes associated with hypermethylated

DMRs were significantly enriched in downregulated genes in

11 out of 12 cancer types (Figure S11, left; FDR < 0.05), while

genes associated with hypomethylated DMRs were significantly

enriched in upregulated genes in 8 out of 12 cancer types

(Figure S11, right; FDR < 0.05). After excluding DMR-associated

genes, MHB-containing genes showed significant enrichment

among both upregulated (10 cancer types) and downregulated

genes (11 cancer types), independent of mean methylation

changes (Figure 5A; p < 0.05).

Next, we utilized our previously established priority index (Pi)

prioritization approach45,46 to elucidate candidate genes likely tar-

geted by pan-cancer MHBs. This prioritization leveraged the infor-

mation on TCGA expression profiles of pan-cancer MHB-associ-

ated genes as well as network evidence (see STAR Methods for

more details). As a result, we prioritized 8,852 pan-cancer MHB-

associated genes that were ranked according to their Pi rating

(Table S11), with the leading prioritized genes more likely to be

shared among multiple tumors (Figure S12); this finding indicated

common dysfunctions across pan-cancer. For further illustration,

we focused on pan-cancer MHB target genes shared by more

than 6 tumors, including the well-known oncogene gene MYC.

Among these pan-cancer MHB targets, those upregulated were

significantly enriched in hallmark pathways closely related to

E2F targets, the G2/M checkpoint, and MYC-activated targets

(FDR < 0.01) (Figure 5B, upper). Notably, MHB-associated genes

in these pathways tended to be activated in various cancer types,

despite minor changes in mean methylation in most genes

(Figure 5B, bottom). For instance, MYC activation in COAD coin-

cided with a co-methylated region near its transcription start site

(TSS) (chr8: 128,750,038–128,750,058; Figure S13A), despite a

single repressive gene-body hypo-DMR (Figure S13B). This

apparent contradiction suggests that the activation of MYC is

more likely attributed to the MHB presence than conventional

methylation patterns. Similarly, the gene SLC2A1, an MYC target

activated in 10 cancer types, harbored a TSS-proximal MHB while

maintaining partial methylation in NSCLC/normal lung tissues

(Figure S13C), with complex DMR patterns (i.e., three hypo-

DMRs in the gene body along with a hyper-DMR located up-

stream close to the TSS and a hypo-DMR in the distal upstream

region) suggesting regulation involving mean methylation and

co-methylation patterns (Figure S13D).

Furthermore, the Pi approach allowed us to identify which

pan-cancer MHB-associated and highly prioritized genes medi-

ated pathway crosstalk. The resulting 53-gene network for

pathway crosstalk (Figure 5C; Table S12) was unlikely to be

observed by chance based on the degree-preserving node per-

mutation test (p = 1.5 × 10− 5), and these crosstalk genes were

enriched in pathways related to MYC, the G2/M checkpoint,

and E2F targets (Figure S14). These findings indicated that the

potential genes controlled by pan-cancer MHBs mainly

contribute to core cancer-related pathways, leading to tumori-

genesis with shared biological characteristics in pan-cancer.

Furthermore, we found that 44 of these 53 MHB-associated

crosstalk genes were associated with overall survival in one or

more tumor types in TCGA dataset (Table S13), as exemplified

by two genes (i.e., RRM2 and SLC2A1) in CESC, LIHC, LUAD,

and PAAD (Figure 5D).

Characterizing DNA methylation inter-tumor

heterogeneity in cancers

MHBs exhibit coordinated methylation patterns, with adjacent

CpGs showing high correlations in methylation levels, as

(E) Association between gene expression and presence of MHBs in promoter regions. For each single cell, promoters were categorized into three groups based

on mean methylation: high (>0.8), intermediate (0.2–0.8), and low (<0.2). Within each group, the expression of genes with MHBs in their promoters was compared

to those without MHBs. Statistical significance was evaluated using the Wilcoxon rank-sum test. Promoters were defined as ± 1 kb region around the TSS.

(F) Impact of MHB methylation levels on gene expression in intermediate- and low-methylation promoter groups. Analysis excluded high-methylation promoters

due to limited MHB-containing genes. Significance was assessed by Wilcoxon rank-sum test.

(G) Association of MHBs and dysregulation of gene expression in single-cell CRC. The DEGs (fold change > 2 and FDR < 0.05) and differentially methylated

promoters (Δbeta > 0.1 and FDR < 0.05) were identified using the Wilcoxon rank-sum test. Genes without differentially methylated promoters were used to

construct a 2× 2 contingency table that separates each gene into one of four categories based on two factors, i.e., status of the MHB and differential expression.

Statistical significance was evaluated by Fisher’s exact test.

(H) Venn diagram showing the number of upregulated genes in PT and LN tumors compared to normal colon tissues that harbor MHBs but lack DMRs in the

promoter regions.

(I) Pathway enrichment of 42 shared MHB-related genes in PT and LN. The online tool in MSigDB was used and top 3 hallmark pathways were shown.

(J) A heatmap shows the mean methylation and expression of 42 shared genes that also contains MHB across single cell. The genes annotated in MYC targets

and G2/M checkpoint pathways were colored in red.

(K) The DNA methylation and gene expression profiles of the 10 genes highlighted in (J) were validated using the TCGA-COAD dataset at different pathological

stages.

(L) The Kaplan-Meier survival curves comparing disease-free survival (DFS) between patient subgroups stratified by the high/low expression (median cutoff) of

CBX3 gene in TCGA-COAD dataset. p value was calculated using the log rank test, and the hazard ratio (HR) was calculated using univariable Cox regression

analysis.
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observed in DNA methylation array data. Analysis of TCGA

data revealed median pairwise CpG correlations >0.85 within

cancer MHBs across all cancer types, significantly exceeding

correlations in CGIs or random genomic regions (most < 0.6;

Figure 6A). To quantify inter-tumor heterogeneity, we calculated

the area under the curve (AUC) of methylation concordance per

tumor, where lower AUC values reflect higher intra-block coordi-

nation. For example, COAD tumors exhibited stronger concor-

dance in MHBs (AUC = 0.009) versus random regions (AUC =

0.03; Figure 6B).

We next linked methylation heterogeneity to transcriptional

changes by comparing tumors with extreme AUC values

(low vs. high: median cutoff). Tumors with increased concor-

dance (lower AUC) showed significant upregulation of genes

(fold change > 2 and FDR < 0.05; Figure 6C), enriched in im-

mune-related pathways (such as allograft rejection, inflamma-

tory response, and IL6-JAK-STAT3 signaling) and epithelial-

mesenchymal transition across multiple cancers (Figure 6D).

Downregulated genes lacked shared pathway enrichment

(Figure S15).

A B

C D

Figure 5. Cancer MHBs are associated with differentially expressed genes in pan-cancer

(A) Enrichment of cancer MHB-associated genes in differentially expressed genes. The forest plot shows the enrichment of cancer MHB-associated genes,

excluding DMR-related genes, in DEGs. Statistical significance was evaluated using the Fisher’s exact test, with p value < 0.05 labeled in red and p value > 0.05

labeled in blue, respectively.

(B) Pathway enrichment of MHB-associated genes in pan-cancer. An integrative prioritization approach utilizing network information (see STAR Methods) was

employed to prioritize MHB-related genes shared by more than six cancer types. Upper: the gene set enrichment of shared upregulated genes. Bottom: the

differences in methylation and expression profiles of selected genes, annotated in the G2/M checkpoint or MYC activity pathway across cancer types.

(C) Pathway crosstalk analysis for pan-cancer. The optimal subnetwork was identified by integrating the target priority rating information with pathway-derived

gene interactions, which were merged from KEGG pathways.

(D) The Kaplan-Meier survival curves compare overall survival between patient subgroups stratified by high/low expression (median cutoff) of RRM2 and SLC2A1

genes in CESC, LIHC, LUAD, and PAAD of TCGA dataset. p values were calculated using the log rank test, and the HR was calculated through univariable Cox

regression analysis.
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A B

C D

E F G

Figure 6. Characterization of DNA methylation inter-tumoral heterogeneity in cancers

(A) Boxplots showing Pearson correlation coefficients of average methylation between pairwise CpGs in TCGA 450K array data. Regions analyzed: pan-cancer

MHBs (all cancer types, union MHBs), cancer type-specific MHBs, CGIs, and random genomic regions.

(B) Quantification of concordant methylation levels. Using COAD as an example, locally estimated scatterplot smoothing (LOESS) curves were fitted between

mean methylation and variance for MHBs versus random regions. The AUC quantifies concordance (lower AUC = higher concordance).

(C) Number of DEGs between tumors with low/high AUCs. Red: upregulated; blue: downregulated.

(legend continued on next page)
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We also analyzed somatic mutations associated with AUC

changes to identify the potential drivers of methylation heteroge-

neity (FDR < 0.05; Figure 6E; Table S14). IDH1-mutant glioblas-

toma and low-grade glioma tumors exhibited reduced concor-

dance (higher AUC; p = 6.98 × 10− 14; Figure 6F), validated in

an independent cohort (mutant: AUC = 0.015 vs. wild type:

AUC = 0.011; p = 2.2 × 10− 2; Figure 6G). These findings impli-

cate genetic alterations in shaping methylation heterogeneity

across tumors.

Cancer MHBs as biomarkers for non-invasive cancer

detection from plasma DNA

MHBs were enriched with fully methylated fragments and

demonstrated to preserve higher signal-to-noise ratio for non-

invasive cancer detection.26 We calculated methylation haplo-

type load (MHL)26 and methylation block score (MBS)47 to

quantify fully methylated k-mers within MHBs. For example, a

universal cancer marker identified in this study (chr1:

119,527,091–119,527,476) was hypermethylated in all 14 can-

cer types (Figure S16). When k-mer width was set to 4, the fre-

quency of 16 different k-mers in tumor and normal samples was

compared. As expected, the relative abundance of fully meth-

ylated k-mer achieved the highest odds ratio, i.e., 10.28 times

of that in normal tissue (Figure 7A). Using cancer MHBs

coupled with DNA methylation metric MHL/MBS, we tested a

published dataset48 with cell-free DNA methylation profiles

from six gastrointestinal cancer types, including CRC (n =

40), ESCA (n = 60), esophageal adenocarcinoma (EAC, n =

12), gastric cancer (GC, n = 37), hepatocellular carcinoma

(HCC, n = 43), and pancreatic ductal adenocarcinoma (PDAC,

n = 74), as well as healthy individuals (n = 46) (Table S15).

The original design targeted 67,832 DMRs, which were covered

by 20,946 cancer MHBs. Our cancer prediction models

achieved the best performance for CRC (MHL AUC = 0.97;

MBS AUC = 0.95), EAC (MHL AUC = 0.80; MBS AUC =

0.80), ESCC (MHL AUC = 0.95; MBS AUC = 0.96), GC (MHL

AUC = 0.88; MBS AUC = 0.85), HCC (MHL AUC = 0.97; MBS

AUC = 0.97), and PDAC (MHL AUC = 0.79; MBS AUC = 0.78)

(Figure 7B). Even when specificity was set to 98%, sensitivity

still reached 56.07%–91%, in contrast to 36.89%–72.22% in

CpG-level mean methylation-based prediction (Figure 7B),

excluding PDAC. We also benchmarked CancerDetector,49 a

method that estimates cancer fraction using read-level statisti-

cal inference. Our analysis revealed that MHBs utilizing methyl-

ation pattern-based MHL/MBS outperform CancerDetector in

detecting cancer from plasma DNA across all cancer types

(Figure S17). These results highlight the superiority of co-

methylation patterns over bulk methylation metrics, establish-

ing MHB-derived biomarkers as powerful tools for non-invasive

early cancer detection.

DISCUSSION

DNA methylation patterns in cancer have been extensively char-

acterized in TCGA project, primarily using the HM450K

BeadChip array. This method predominantly measures average

methylation in CGIs and promoter regions. Cancer DMRs were

defined by comparing cancer methylomes to those of normal

tissues. Most attention has focused on hyper-DMRs that

repress tumor suppressor genes.50 With the advancement of

sequencing technologies, epigenetic heterogeneity of cancer

has been depicted by the analysis of disordered methylation at

the fragment level.14,26 The methylation of a region may evolve

overtime and achieve fixation, i.e., fully unmethylated or methyl-

ated states, or a mixture of these two states, forming MHBs.

While MHBs have been primarily used as potential biomarkers,

their functions remain to be fully elucidated.26 In our previous

work, we demonstrated that MHBs were enriched in enhancers

and tissue-specific genes in normal tissues.50 Building upon this

foundation, the present study profiles 11 common cancer types

using WGBS to construct an atlas of DNA mHaps and a land-

scape of cancer MHB in common solid cancers.

Our results demonstrated that MHBs are features of cell iden-

tity rather than static genomic structures shared across tissue

types and disease statuses. When compared to normal tissues,

most cancer MHBs were not observed in non-malignant coun-

terparts, suggesting that MHBs are specific to disease status.

We validated our findings using external datasets for CRC,

ESCC, and LIHC. Most convincingly, our discoveries were

corroborated by single-cell data, which represent the ultimate

method for resolving cancer heterogeneity. The CRC MHBs

identified from scBS-seq were significantly and specifically en-

riched in colon cancer among the 11 cancer types studied.

These results collectively demonstrate that MHBs are features

of cell identity that are both tissue- and disease status specific.

We investigated the regulatory functions of MHBs from multiple

angles. Initially, we found that a significant number of MHBs over-

lap with open chromatin regions, demonstrating a higher enrich-

ment compared to conventional DNA methylation-associated

regulatory regions like UMRs and LMRs. Second, MHBs are

involved in long-range chromatin interactions, as evidenced by

their enrichment in ChIA-PET loops in a disease status-specific

manner. Specifically, cancer MHBs were more enriched in can-

cer-associated ChIA-PET loops, while normal MHBs were more

enriched in normal tissue ChIA-PET loops. Third, cancer MHBs

were enriched in DMRs in a cancer type-specific manner. Fourth,

MHBs were significantly associated with gene expression inde-

pendent of their DMR status. Most importantly, this observation

is validated by single-cell data. We utilized a unique single-cell da-

taset, which profiled DNA methylation and gene expression simul-

taneously at single-cell resolution. Analysis of this dataset

(D) Enriched pathways in upregulated DEGs, hallmark pathways from MSigDB.

(E) Volcano plot associating driver mutations with concordant methylation levels (measured by AUC). Statistical significance was calculated by Student’s two-

sided t test (FDR < 0.05). Red: AUC increased; blue: AUC decreased.

(F) Boxplots showing IDH1 mutation significantly associated with methylation concordance in TCGA dataset. p value was calculated using two-sided Student’s t

test.

(G) Independent validation of IDH1 mutation effect (GSE50774). Mean methylation-variance plots compare IDH1-mutant (Mut, n = 13) and wild-type (WT, n = 13)

samples. p value was calcuated using two-sided Student’s t test.
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revealed that among genes without annotated DMRs, those con-

taining MHBs were significantly upregulated in CRC, suggesting

the regulatory role of MHBs independent of mean methylation

changes. Collectively, results from bulk bisulfite sequencing

(BS-seq), scBS-seq, and HM450K array demonstrated that these

cancer MHB-containing genes were enriched in oncogenic path-

ways such as the G2/M checkpoint and MYC pathway.

Clinically, we demonstrated that MHBs achieve superior diag-

nostic performance in liquid biopsies versus conventional met-

rics. Using DNA mHap-level metrics (MHL and MBS) outper-

formed mean methylation-based approaches (i.e., using beta

values). Comparative analysis against established methods like

CancerDetector highlighted the advantage of co-methylation

patterns, underscoring MHBs’ translational potential.

Limitations of the study

We acknowledge several limitations of our work. First, we only

profiled tumor samples, lacking corresponding data from adja-

cent normal tissues. Consequently, the identification of DMRs

and MHBs in normal tissues relied on curated datasets from

diverse sources, potentially introducing variability due to batch

effects and biological heterogeneity. Additionally, the analytical

tool used does not distinguish between paternal and maternal

fragments, which might result in the incorrect classification of im-

printed regions as MHBs. In a single cell, each chromosome

potentially has four DNA mHaps—two from the paternal chromo-

some (forward and reverse strands) and two from the maternal

chromosome (forward and reverse strands). Fully resolving these

haplotypes would require phased SNP calling, which remains

challenging for both bulk BS-seq and scBS-seq data. In bulk

BS-seq analysis, we treat each sequencing read as one frag-

ment of an mHap without explicitly addressing allele-specific in-

formation. For scBS-seq, we simplified the approach by convert-

ing mean methylation values to binary states. This allows us to

identify regions with coordinated methylation patterns, though

this strategy masks CpG sites with allele-specific methylation

in each single cell. Our previous research suggests that approx-

imately 1% of MHBs in normal tissues are in imprinted regions.27

To explore the potential roles of MHBs in pan-cancer analysis,

we utilized gene expression profiles from TCGA. These profiles

were not entirely matched to the samples sequenced in this

study, potentially introducing bias due to cancer heterogeneity.

In addition, we observed that MHBs were associated with

gene expression changes when controlling for changes in

mean methylation, possibly through the regulation of transcrip-

tion factors enriched in MHBs. However, this observation lacks

experimental validation. Lastly, we leveraged cancer MHBs as

biomarkers for non-invasive cancer detection from plasma

DNA, but using targeted BS-seq data did not cover all the re-

gions of cancer MHBs, leading to bias in cancer prediction.

Despite these constraints, our work establishes MHBs as key

players in maintaining cancer identity through coordinated

epigenetic regulation, providing a foundation for future multi-

omics exploration of mHaps in oncology.
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Further information and requests for resources and reagents should be directed

to and will be fulfilled by the lead contact, Jiantao Shi (jtshi@sibcb.ac.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

• The mHap data for 110 human tumor samples profiled in this study have

been deposited at GEO (GSE212391). Processed mHap data from

A B

Figure 7. Cancer MHB-based non-invasive cancer detection with plasma DNA

(A) MHB regions as biomarkers for cancer detection. A universal cancer marker (chr1: 119,527,091–119,527,476) identified from cancer MHBs, the k-mers width

was set to 4, and the frequency of 16 different k-mers in tumor and normal samples was displayed.

(B) Cancer detection performance using random forest models based on MHL, MBS, and CpG-level mean methylation in plasma DNA. Receiver operating

characteristic (ROC) curves and AUC values from 5-fold cross-validation comparing CRC, ESCC, HCC, GC, EAC, and PDAC against normal samples.
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publicly available BS-seq datasets for tumor tissue, normal tissue,

and cfDNA have been deposited at Zenodo (DOI: https://doi.org/10.

5281/zenodo.16496803 and https://doi.org/10.5281/zenodo.16485955,

respectively).

• All original code is available at Zenodo (DOI: https://doi.org/10.5281/

zenodo.16496342).

• Additional information required to reanalyze the data is available from

the lead contact upon request.
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110 fresh-frozen primary solid tumor samples Hangzhou First People’s Hospital Listed in Table S1
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Processed WGBS data of 110 human primary

solid tumors

This study GEO: GSE212391

TCGA Methylation, RNA-seq and ATAC-seq

data

TCGA et al.29,40 https://gdac.broadinstitute.org; https://gdc.

cancer.gov/about-data/publications/

ATACseq-AWG

Pan-cancer RRBS data Zhang et al.38 GEO: GSE230193

Public WGBS data of human normal tissues Guo et al.,26

Cao et al.,34

Li et al.,35 Jenkinson et al.,36

Hevn et al.,37

Lin et al.,51

Hon et al.,52

ENCODE,41

Lister et al.,53

Ziller et al.,54

Court et al.,55

Guo et al.,56

Cai et al.,57

McDonald et al.,58

Bernstein et al.,59

Wang et al.,60

Schroeder et al.61

Listed in Table S4, and the mHap files are

available at https://doi.org/10.5281/zenodo.

16474855

Paired WGBS and RNA-seq of ESCC Cao et al.34 GEO: GSE149612

Colorectal cancer RRBS data Guo et al.,26 Lin et al.32 GEO: GSE79211, GSE56269

Colorectal cancer single-cell multi-omics data Bian et al.18 GEO: GSE97693

Liver cancer WGBS data Li et al.,35 Jenkinson et al.,36 Hevn et al.,37 GEO: GSE70090, GSE79799

SRA: SRX381661, SRX381666

DNA methylation of cfDNA in plasma Kandimalla et al.48 GEO: GSE149438

Pol II ChIA-PET (MCF-7, MCF-10A) ENCODE41 ENCODE: ENCFF597SQA, ENCFF252XDG

KLF5 ChIP-seq Li et al.44 GEO: GSM4274815

CollecTRI database Müller-Dott et al.42 OmniPath (https://omnipathdb.org/) and

DoRothEA (https://saezlab.github.io/dorothea)

CpG island UCSC http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/database/cpgIslandExt.txt.gz

FANTOM5 enhancer FANTOM5 https://enhancer.binf.ku.dk/presets/
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Lamin B1 domain (LAD) UCSC http://hgdownload.cse.ucsc.edu/goldenPath/
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Ultra-conserved elements (UCEs) UCSC http://www.cse.ucsc.edu/∼jill/ultra.html

KEGG data Kanehisa et al.62 https://www.genome.jp/kegg/

Software and algorithms

Original code This study https://doi.org/10.5281/zenodo.16496342

mHapTools v0.10 Zhang et al.16 https://github.com/butyuhao/mHapTools

mHapTK (mHapSuite) v2.0 Ding et al.32 https://github.com/yoyoong/mHapSuite
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study included tumor samples from 110 patients across 11 different cancer types, with approximately 10 samples per cancer

type. Sample collection was approved by the Ethics Committee of Affiliated Hangzhou First People’s Hospital, Zhejiang University

School of Medicine, Hangzhou, China. Participants ranged in age from 34 to 87 years and were stratified by cancer type for analysis.

Comprehensive demographic and clinical characteristics, including age, sex, cancer types, and clinical stages, are detailed in

Table S1. Due to the limited sample size per cancer type (approximately 10 samples each) and the pooled analysis approach em-

ployed in this study, we were unable to assess the influence of sex or gender on the results. This represents a limitation of our study

design, and future studies with larger cohorts would be needed to evaluate potential sex-specific effects.

METHOD DETAILS

WGBS library construction and sequencing

Frozen tumor tissues were sliced to 3 mm3, and genomic DNA was isolated using the DNeasy Blood & Tissue Kit (QIAGEN, Cat. No.

69504; Hilden, Germany) per the manufacturer’s instructions. Then, 200 ng of purified genomic DNA were sheared to 100–500 bp

using a Covaris S2 (Covaris; Woburn, MA, USA) sonicator. Next, we treated the fragmented DNA using the EpiTect Fast Bisulfite Con-

version Kit (QIAGEN, Cat. No. 59824; Hilden, Germany) with a modified protocol–two cycles of 98◦C for 5 min and 60◦C for 25 min,

followed by a hold at 25◦C. The bisulfite-converted DNA was subjected to WGBS construction using the Accel-NGS Methyl-seq DNA

Library Kit (Swift Biosciences, Cat. No. 51002025P; Ann Arbor, MI, USA) as recommended by the manufacturer. WGBS libraries were

sequenced for 2 × 150 cycles in an Illumina NovaSeq 6000 sequencer.

External data collection

We curated a panel of public WGBS samples from normal tissues: breast (n = 5),37,41,51,52 colon (n = 7),26,37,41,53,54 head and neck (n =

28),55 esophagus (n = 15),34,41,53 liver (n = 15),26,35–37,41,56,73 lung (n = 12),26,35–37,41,53 ovary (n = 8),41,53,57 ncreas (n = 6),26,41,53,58

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

mHapSC v1.0 This study https://github.com/yoyoong/mHapSc

BSMAP v2.90 Xi et al.63 http://code.google.com/p/bsmap/

bedtools v2.25.0 Quinlan et al.64 http://code.google.com/p/bedtools

ChIPseeker v1.28.3 Wang et al.65 https://www.bioconductor.org/packages/

release/bioc/html/ChIPseeker.html

clusterProfiler V4.0.5 Yu et al.66 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

decoupleR v2.9.11 Badia-I-Mompel et al.67 https://saezlab.github.io/decoupleR/

dnet v1.1.7 Fang et al.68 https://github.com/hfang-bristol/dnet

FastQC v0.11.8 N/A https://github.com/s-andrews/FastQC

LOLA v1.22.0 Sheffield et al.39 http://code.databio.org/LOLA/

MethylDackel v0.5.0 N/A https://github.com/dpryan79/MethylDackel

MethylSeekR v1.32.0 Burger et al.10 https://bioconductor.org/packages/release/

bioc/html/MethylSeekR.html

Metilene v0.2-8 Jühling et al.69 http://legacy.bioinf.uni-leipzig.de/Software/

metilene/

pracma v2.4.4 N/A https://cran.r-project.org/web/packages/

pracma/index.html

rGREAT v2.4.0 Gu et al.43 https://jokergoo.github.io/rGREAT/

Sambamba v0.7.1 Tarasov et al.70 https://lomereiter.github.io/sambamba/

SRA Toolkit v2.9.1 NCBI https://github.com/ncbi/sra-tools

Trim galore v0.6.2 N/A https://github.com/FelixKrueger/TrimGalore

TxDb.Hsapiens.UCSC.hg19.knownGene

v3.2.2

N/A https://bioconductor.org/packages/TxDb.

Hsapiens.UCSC.hg19.knownGene/

XGR v1.1.9 Fang et al.71 https://github.com/hfang-bristol/XGR

liftOver Kent et al.61 https://hgdownload.soe.ucsc.edu/admin/exe/

linux.x86_64/liftOver

GEPIA Tang et al.72 http://gepia.cancer-pku.cn
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stomach (n = 11),26,41,53,59,60 thyroid gland (n = 2),41 and placenta (n = 7).37,59,61,73 Additionally, WGBS samples from liver cancer

(n = 9)35–37 and ESCC (n = 10),34 as well as RRBS samples from CRC (n = 19)26,33 and previous pan-cancer study (GSE230193,

n = 498),38 were included. Detailed sample annotations are described in Table S4.

We explored the potential application of MHBs in a targeted BS-seq dataset48 of cell-free DNA from gastrointestinal cancers and

normal individuals, including CRC (n = 40), ESCC (n = 48), EAC (n = 12), GC (n = 37), HCC (n = 43), PDAC (n = 74), and healthy donors

(n = 46). Detailed annotation of these samples was described in Table S15.

For Pol II ChIA-PET data,41 the processed results from MCF-7 (ENCFF597SQA) and MCF-10A (ENCFF252XDG) cell lines were

retrieved from the ENCODE project. Regions of open chromatin (ATAC-seq peaks) across 11 cancer types from TCGA were down-

loaded from the NCI Genomic Data Commons (https://gdc.cancer.gov/about-data/publications/ATACseq-AWG).40 RNA-seq and

DNA methylation HM450K array data for 11 cancer types from TCGA were obtained from the Genome Data Analysis Center at

the Broad Institute (https://gdac.broadinstitute.org).29

The normalized gene expression profiles of ESCC dataset were obtained from GSE149612. The single-cell DNA Methylation data

of colorectal cancer was obtained from GSE97693. When applicable, genomic coordinates of downloaded regions were converted

to hg19 using the liftover tool.74

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing of BS-seq data

Raw SRA files were downloaded from NCBI GEO and converted to fastq files using the SRA Toolkit (version 2.9.1). Quality control

was then performed with FastQC (version 0.11.8). Trim galore (version 0.6.2) was used to remove sequence adapters and low-quality

bases, operating in paired-end or single-end mode with default settings. The trimmed sequences were subsequently aligned to the

human genome version hg19 using BSMAP63 with the parameters ‘‘-q 20 -f 5 -r 0 -v 0.05 -s 16 -S 1’’. For WGBS, duplicate reads were

identified and marked using Sambamba (version 0.7.1).70 Mean CpG methylation levels were extracted with MethylDackel (https://

github.com/dpryan79/MethylDackel) (version 0.5.0).

Identification of DNA methylation-associated regions

Differentially methylated regions (DMRs) for WGBS were identified using Metilene (v.0.2–8)69 with parameters ‘‘-t 10 -c 2 -m 5’’. Only

DMRs with q value <0.05 and covered by at least five CpG sites were retained for downstream analysis. The genome of each cancer

type was segmented into UMR, LMR, and PMDs using the MethylSeekR tool (version 1.32.0) with default parameters.10 The rest of

genome regions, excluding the gaps annotated by UCSC (https://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/-gap.txt.

gz), were defined as HMRs. Biological replicates of the same cancer type or tissue type were pooled to increase coverage.

For methylation array data, the differentially methylated CGIs were defined as DMRs. Briefly, differentially methylated probes were

identified by Wilcoxon rank-sum test with FDR <0.05 and Δbeta >0.1. Next, we retained the probes located in CGIs. Subsequently,

differentially methylated CGIs were estimated by identifying CGIs harboring differentially methylated probes. A CGI was classified as

a hypomethylated DMR if at least two-thirds of its probes were hypomethylated. The identification of hypermethylated DMRs fol-

lowed the same criterion.

Differential gene expression analysis

DEGs between tumor and normal samples in both bulk and single-cell data were calculated using Wilcoxon rank-sum test with the

thresholds of fold change >2 and FDR <0.05.

Identification of MHBs from bulk and single-cell BS-seq data

To identify MHBs from bulk and single-cell BS-seq data, we applied a seed-and-extend algorithm. The process starts by selecting a

seeding window of five consecutive CpGs, requiring significant linkage disequilibrium correlation (LD R2 > 0.5, binomial test p < 0.05)

between all pairwise CpGs within the window. This window is iteratively extended by adding adjacent CpGs that maintain LD cor-

relation (LD R2 > 0.5, binomial test p < 0.05) with every CpG in the existing window. Extension continues until no additional CpGs

meet the threshold, defining the contiguous region as an MHB.

For bulk BS-seq, BAM files were converted to mHap files with mHapTools (version 1.1).16 MHBs were identified with mHapSuite

(https://github.com/yoyoong/mHapSuite), a java implementation of mHapTk,32 with default parameters ‘‘-window 5 -r2 0.5 -pvalue

0.05’’. Genome-wide methylation tracks were created with mHapSuite using default parameters ‘‘–minK 1 –maxK 10 –K 4’’.

For single-cell BS-seq, mean methylation values from forward and reverse strands were converted to binary methylation haplo-

types by thresholding: values < 0.1 as 0 (unmethylated), >0.9 as 1 (methylated), excluding intermediate values. Single-cell MHBs

were identified using mHapSc (https://github.com/yoyoong/mHapSc) with default parameters ‘‘-window 5 -r2 0.5 -pvalue 0.05’’.

The genomic annotations of cancer MHBs were performed using ChIPseeker.65

Genomic region enrichment analysis

The R package LOLA (v1.22.0)39 was used to test the enrichment of a query region set in a database of reference region sets, with

FDR <0.05 considered statistically significant. To evaluate tissue or cancer specificity, the normal MHBs, methylation-associated
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regions (PMD, LMR, UMR, HMR), and DMRs were compared with cancer MHBs by LOLA enrichment. The FDR were ranked, and the

top k tissues with the highest significance were highlighted, where k was dependent on the database size. In case of tied ranks, more

than k tissues may be highlighted. The specific k used in each dataset is indicated in the figure legends.

For ChIA-PET tag enrichment analysis within cancer MHBs, we employed a permutation-based approach to assess the enrich-

ment of a set of genomic features (reference set) in a set of MHBs (query set). The ‘‘shuffle’’ function in bedtools (v2.25.0)64 was

used to generate 1000 random sets that match the size of the query set. The expected overlap was calculated as the average number

of overlaps between the reference set and random sets. Enrichment score was defined as the ratio of observed and expected

numbers of overlapping regions. The permutation p-value was determined as the fraction of random sets that showed more overlaps

with the reference set than the query set.

Transcription factor activity inference

Transcription factor activities in ESCC were calculated using the decoupleR R package.67 First, a high-confidence network

comprising 1,186 TFs and their target genes was downloaded from the CollecTRI database42 as prior knowledge. Next, the rGREAT

R package43 with default parameters was employed to assess the enrichment of TF regulons in ESCC MHB regions, retaining only the

significant ones (FDR <0.05). Finally, a univariate linear model method was applied to infer TF enrichment scores using RNA-seq data

from ESCC and paired adjacent normal esophageal samples.

Priority index (Pi) prioritization for pan-cancer MHB target identification

Following our well-established Pi prioritization approach,45,46 we generated a ranked list of 8,852 pan-cancer MHB-associated genes

(priority ratings: 0–5) and identified a 53-gene pathway crosstalk. Two inputs were considered: (i) TCGA expression profiles of pan-

cancer MHB-associated genes identified in this study; and (ii) KEGG pathway-derived gene interactions. The prioritization comprised

the following key components.

(1) Core genes under expression evidence of pan-cancer MHB-regulated genes. DEGs potentially regulated by cancer MHBs

(excluding DMR-associated genes) were defined as core genes in each tumor type through four steps. At Step 1, DEGs

were identified between tumors and normal controls using the Wilcoxon rank-sum test. At Step 2, the significance of genes

was quantified simultaneously considering the combined information of log2(fold change) and FDR. At Step 3, MHB-related

genes were identified using rGREAT43 with default parameters, while DMR-associated genes identified by promoter methyl-

ation changes (1,000 bp around the TSS). At Step 4, DEGs potentially regulated by MHBs but excluding those DMR-associ-

ated genes were retained as core genes. These core genes were used as inputs for identifying peripheral genes (see the next).

(2) Peripheral genes under network evidence of pathway interactions. Using the random walk with restart (RWR) algorithm,75 pe-

ripheral genes were prioritized based on connectivity to core genes in a KEGG-derived network (∼6,300 nodes/genes and

∼55,000 interactions/edges).62 Seed nodes represented core genes; non-seed peripheral genes received affinity scores re-

flecting network proximity to seeds.

(3) Gene-predictor matrix for target gene prioritization at the gene and pathway crosstalk levels. For pan-cancer datasets (e.g.,

BRCA and ESCA), the process described above yielded a predictor containing both MHB-associated core and peripheral

genes, along with affinity scores quantifying network connectivity to seed core genes. The resulting gene-predictor matrix

contained rows for genes and columns for predictors. Within this matrix, Fisher’s combined meta-analysis method was

used to combine predictors, incorporating genetic evidence and network evidence. It involved affinity score conversion,

that is, converting into P-like values using empirical cumulative density function (eCDF) that were subsequently combined

across predictors via Fisher’s combined method to produce priority rating (0–5). The identification of pan-cancer MHB-regu-

lated and highly prioritized target genes at the pathway crosstalk involved a heuristic solution, with the statistical significance

(P value) assessed using a degree-preserving node permutation test (see our previous publications).68,71

Pathway enrichment analysis

To investigate biological functions and pathways associated with MHB-linked genes, we performed enrichment analysis using the

clusterProfiler66 R package (v4.0.5). Gene sets were obtained from MSigDB: curated chemical and genetic perturbation sets (C2)

identified pathways linked to optimal subnetwork genes from pathway crosstalk analysis, while Hallmark gene sets

(H) representing 50 core biological processes assessed differences between high- and low-AUC tumors. Gene symbols were first

converted to Entrez IDs using the ‘‘bitr’’ function from the org.Hs.e.g.,.db annotation package. All genes measured in the dataset

served as the background. Results were visualized using dot plots and bar plots generated by the dotplot and barplot functions,

with significant terms/pathways filtered at FDR <0.05.

Survival analysis

Survival analysis was performed using the online tool GEPIA (http://gepia.cancer-pku.cn/)72 with TCGA RNA-seq data. Participants

were stratified into two groups based on median expression across all tumor samples. Kaplan-Meier survival curves compared dis-

ease-free survival and overall survival between patient subgroups stratified by high/low gene expression (median cutoff). p values

were calculated using log rank tests, and hazard ratios were determined through univariable Cox regression analysis.
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Quantifying the level of concordant methylation

To quantify co-methylation patterns, we calculated the AUC derived from LOESS curves fitted between mean methylation and

methylation variation within MHB regions using HM450K array data. First, MHB regions were mapped to HM450K probes, excluding

regions with fewer than three probes. Mean methylation and variation (variance across probes) were computed for each MHB region.

A LOESS curve (span = 0.3) was fitted to model the relationship between mean methylation and variation per sample, with AUC calcu-

lated using the ‘‘trapz’’ function from the pracma R packages. Samples were assigned an AUC score reflecting methylation concor-

dance: lower AUC indicates higher methylation consistency (lower heterogeneity), while higher AUC reflects greater disorder (higher

heterogeneity). Samples were categorized based on AUC scores for downstream comparisons. To assess mutation effects, samples

were stratified by tumor driver mutation status, enabling analysis of mutation-associated methylation heterogeneity within MHB

regions.

Machine learning-based cancer detection

We constructed a random forest model using the python ‘‘scikit-learn’’ package, incorporating CpG-level mean methylation, MHL,26

and MBS47 for 20,946 cancer MHBs overlapping 67,832 DMRs in the GSE149438 dataset across six cancer types. The model was

configured with 1,000 decision trees, a maximum tree depth of 5, and randomized variable selection at each split. Performance was

evaluated using receiver operating characteristic (ROC) curves, with 5-fold cross-validation and iterative parameter tuning to opti-

mize ROC values. For benchmarking, we compared results against established methods such as CancerDetector49 across the

same six cancer types in MHB regions, using ROC curves for performance evaluation.
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Figure S1. The MHB characteristics in 11 common solid cancers. (A) A scatter plot shows 
the relationship between number of MHBs and number of mHaps. (B) The length distribution 
of the union of MHBs from all cancer types. (C) Enrichment of MHBs in regions of genomic 
features. Enrichment scores were defined as the ratio of observed and random overlapping 
counts between MHBs and genomic regions. Significance was assessed by permutation test 
(1000 times). Enrichment analysis was also performed when confounding regions such as 
promoters and CGIs were removed. ***, P < 0.001. Regions of LADs, UCSC promoters, and 
CGIs were downloaded from UCSC Genome Browser (https://genome.ucsc.edu). CGI shores 
(< 2 kb flanking CGIs) and CGI shelves (<2 kb flanking outwards from the CGI shores) were 
defined based on genomic positions of CGIs. FANTOM5 enhancers were downloaded from 
FAMTOM5 data server: https://fantom.gsc.riken.jp/5/data/. TADs in IMR90 and HMEC cell lines 
were downloaded from ENCODE project (https://www.encodeproject.org). 481 UCEs 
(UltraConserved Elements) was obtained from http://www.cse.ucsc.edu/~jill/ultra.html. (D-E) A 
heatmap of signed LD R2 and mean methylation of 16 MHB clusters in 11 cancer types.  
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Figure S2. Heatmap of signed LD R2 and mean methylation levels across 16 MHB 
clusters in 110 solid tumor samples. For visualization purposes, 100 regions were 
randomly selected from each of the 16 clusters. 
  



 

 
Figure S3. Comparison of individual tumor MHBs versus cancer type-specific MHBs. 
MHBs were identified from each individual tumor sample using the same parameters applied 
to the pooled samples. For each cancer type, the percentage of individual tumor MHBs that 
overlap with the corresponding cancer type-specific MHBs is shown. 
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Figure S4. Comparison of MHBs identified in this study with those from public datasets. 
(A-C) Venn diagrams show number of MHBs shared between those identified from this study 
(in red) and external datasets (in blue). The comparison was performed for three cancer types, 
including CRC (A), ESCA (B), LIHC (C). (D) A bar plot shows fraction of regions in 16 MHB 
clusters covered by placenta MHBs. (E) A heatmap shows the percentages of cancer type-
specific MHBs that are also present in normal tissues. 
 

 
Figure S5. Enrichment of cancer type-specific MHBs in cancer-type-specific TissGenes. 
Tissue-specific genes in cancer were downloaded from TissGDB 
(https://bioinfo.uth.edu/TissGDB/). The significance rank was defined by the values of FDR, 
which are calculated by R package rGREAT. Non-significant results were shown in gray (P-
value > 0.05). 
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Figure S6. Cancer MHB enrichment in regulatory regions. (A) Enrichment of MHBs in 
regions of open chromatin. ***, p < 0.001. **, p < 0.01. *, p < 0.05. (B). The percentage of PMD 
in 11 cancer types. (C-D). The enrichment of MHBs in UMR and HMR, respectively. The 
significance rank was defined by the values of FDR, which are calculated by R package LOLA, 
all cancer types MHBs as background. The grey color shows the results with FDR > 0.01. 
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Figure S7. Enrichment of MHBs in regulatory regions is dependent of mean methylation. 
(A-J) Genomic regions with MHBs are more enriched in regions of open chromatin regardless 
of mean methylation levels. The enrichment score was calculated as the percentage of CpGs 
covered by regions of open chromatin. The open chromatin data (ATAC-seq peaks) from TCGA 
project. 
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Figure S8. Genomic regions enrichment in MCF-7 or MCF-10A Pol II ChIA-PET. (A) The 
normalized coverage of breast cancer MHBs, normal breast MHBs, FANTOM5 enhancer and 
random regions in MCF-7 (ENCFF597SQA) and MCF-10A (ENCFF252XDG) Pol II ChIA-PET 
data, respectively. (B) Enrichment of ChIA-PET tags in MHBs. We divided the Pol II ChIA-PET 
tags into 10 groups, LMR, UMR, PMD, HMR and a combination of any two of them. Permutation 
test (100 times) was performed to evaluate the fold enrichment of MHBs from BRCA and normal 
tissues in MCF-7 and MCF-10A ChIA-PET tags. 
 
 
 

 
Figure S9. Mean methylation profiles of MHBs not overlapping DMRs. (A-J) In each cancer 
type, MHBs that don’t overlap with DMRs were plotted. Mean methylation around center of 
MHBs (+/- 1000 bp) was shown. 
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Figure S10. Validation of cancer MHBs and their regulatory roles using single-cell CRC 
data. (A). A Pie chart illustrates the proportion of single-cell MHBs of malignant tumor cells 
annotated to promoter, exonic, intronic, and intergenic regions. (B). Veen diagram of MHBs 
identified from single-cells data and bulk data. 
 
 
 
 

 
Figure S11. Association between DMRs and differentially expressed genes in pan-cancer. 
Enrichment of DMR-associated genes in differentially expressed genes. Statistical significance 
was evaluated using Fisher’s exact test. The resulting P-values were adjusted for multiple 
testing and reported as FDR. Upregulated genes and downregulated genes are labelled in red 
and blue, respectively.  
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Figure S12. Distribution of MHB-related genes in pan-cancer ranked by Priority index. 
The bar plot shows the distribution of genes, which are potentially regulated by MHBs but not 
by DMRs, among upregulated and downregulated DEGs in pan-cancer. All of the genes ranked 
by priority index rating. 
  



 

 
Figure S13. Methylation patterns of MHBs in MYC and SLC2A1 gene loci in COAD and 
NSCLC. (A) MHB in the MYC gene locus (chr8: 128,749,850 - 128,750,150). The upper panel 
shows the mean methylation levels; the middle panel illustrates the DNA methylation status of 
individual fragments, with black and white representing methylated and unmethylated CpG 
sites, respectively; and the bottom panel displays the genomic position of the MHB relative to 
adjacent genes, alongside a heatmap of signed linkage disequilibrium (LD) R² values in the 
region. (B) IGV screenshot for MYC showing tracks of mean methylation in cancer and normal 
tissues, MHB locations, differentially methylated regions (DMRs), and promoter regions 
(defined as 1000 bp upstream to 1000 bp downstream of the TSS). (C) MHB in the SLC2A1 
gene locus (chr1: 43,423,000 - 43,423,600). Panel organization is the same as in (A). (D) 
Integrative IGV screenshot for SLC2A1. 
 



 

Figure S14. Pathway enrichment of subnetwork genes. The curated gene set collection 
C2 from the MSigDB.  
 

 

Figure S15. Dotplot of enriched pathways in downregulated genes associated with inter-
tumoral heterogeneity across cancer types. Analysis was performed using clusterProfile R 
package with hallmark pathways from MSigDB. 
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Figure S16. Mean methylation at chr1:119,527,091-119,527,476 across TCGA datasets. 
  

 

Figure S17. Evaluation the performance of cancer detection using the CancerDetector 
method. Six cancer types from GSE149438 dataset were tested. 
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