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Backgrounds: Lung cancer is the leading cause of cancer related death worldwide.
Current treatment strategies primarily involve surgery, chemotherapy, radiotherapy,
targeted therapy, and immunotherapy, determined by TNM stages, histologic types,
and genetic profiles. Plenty of studies have been trying to identify robust prognostic
gene expression signatures. Even for high performance signatures, they usually have few
shared genes. This is not totally unexpected, since a prognostic signature is associated
with patient survival and may contain no upstream regulators. Identification of master
regulators driving disease progression is a vital step to understand underlying molecular
mechanisms and develop new treatments.

Methods: In this study, we have utilized a robust workflow to identify potential master
regulators that drive poor prognosis in patients with lung adenocarcinoma. This workflow
takes gene expression signatures that are associated with poor survival of early-stage lung
adenocarcinoma, EGFR-TKI resistance, and responses to immune checkpoint inhibitors,
respectively, and identifies recurrent master regulators from seven public gene expression
datasets by a regulatory network-based approach.

Results: We have found that majority of the master regulators driving poor prognosis in
early stage LUAD are cell-cycle related according to Gene Ontology annotation. However,
they were demonstrated experimentally to promote a spectrum of processes such as
tumor cell proliferation, invasion, metastasis, and drug resistance. Master regulators
predicted from EGFR-TKI resistance signature and the EMT pathway signature are
largely shared, which suggests that EMT pathway functions as a hub and interact with
other pathways such as hypoxia, angiogenesis, TNF-α signaling, inflammation, TNF-β
signaling, Wnt, and Notch signaling pathways. Master regulators that repress
immunotherapy are enriched with MYC targets, E2F targets, oxidative phosphorylation,
and mTOR signaling.

Conclusion: Our study uncovered possible mechanisms underlying recurrence,
resistance to targeted therapy, and immunotherapy. The predicted master regulators
may serve as potential therapeutic targets in patients with lung adenocarcinoma.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related death
worldwide, and over 2.21 million new cases was reported in
2020 (Ferlay et al., 2021). Non–small cell lung cancer (NSCLC)
accounts for 85% of all lung cancer cases (Duma et al., 2019).
Histologically, NSCLC is further divided into adenocarcinoma
(∼40%), squamous cell carcinoma (∼40%), and large cell
carcinoma (∼20%). Current treatment strategies for NSCLC
primarily involve surgery, chemotherapy, radiotherapy,
molecularly targeted therapy, and immunotherapy, determined
by TNM stages, histologic types, and genetic profiles. Surgical
resection is the treatment of first choice for early-stage (stage I-II)
NSCLC patients. Patients with stage I or II lung adenocarcinoma
(LUAD) have 60–70% 5-year survival after surgical resection
(Booth et al., 2010). However, more than half of these patients
eventually die of recurrences. Even for stage I patients, 11%–48%
will relapse in 5 years (Vansteenkiste et al., 2014). With the
advent of genomic medicine, EGFR-positive lung cancer was
found to represent about 13–47% of LUAD patients (Zhou and
Christiani, 2011). For inoperable NSCLC harboring EGFR
mutations, EGFR tyrosine kinase inhibitors (TKI) was received
as the first-line therapy, but most patients eventually become
resistant within 8–14 months (Yu et al., 2013). For inoperable
NSCLC without EGFR mutation, PD-1/PD-L1 immune
checkpoint inhibitor (ICI) has become the first-line therapy.
Immunohistochemistry of PD-L1 protein has emerged as a
biomarker for ICI treatment. However, patients with low PD-
L1 expressing even undetectable PD-L1 expressing could also
benefit from ICI treatment; and patients with high PD-L1
expressing could fail to respond to ICI treatment (Ilie et al.,
2016). In summary, although targeted therapy and particularly
immunotherapy have revolutionized the treatment landscape of
NSCLC, it remains the leading cause of cancer death.
Understanding the prognostic factors and underlying
molecular mechanisms of NSCLC are vital steps towards new
treatments.

Prognostic factors in NSCLC include the stage of
diagnosis, histology, smoking status, and gene expression
profiles. Plenty of studies have been trying to identify
robust prognostic gene expression signatures. However,
half of the reported NSCLC prognostic signatures behave
just like random gene sets (Tang et al., 2017). The lack of
consistent prognostic biomarkers hinders its clinical
application. Even for high-performance signatures, they
usually have few shared genes. For example, expression
signature of six genes including UBE2C, TPX2, MCM2,
MCM6, FEN1, and SFN were associated with prognosis in
stage I NSCLC patients (Kadara et al., 2009), but in another
research, a totally different 15-gene signature was reported as
prognostic markers in early-stage NSCLC patients (Zhu et al.,
2010). Since a prognostic signature is associated with patient
survival and may contain no upstream regulators, which
reveal the mechanism of disease progression and may

serve as novel therapeutic targets to improve patient
survival (Manjang et al., 2021). Regarding EGFR-TKI
resistance, the mechanism is relatively well understood
(Westover et al., 2018). Genetic alterations account for
90% of the EGFR-TKI resistant cases including EGFR
T790M mutation, KRAS mutation, MET amplification, and
HER2 amplification (Westover et al., 2018). Epithelial-
mesenchymal transition (EMT) (Weng et al., 2019),
hypoxia (Lu et al., 2018), and small cell transforming
(Leonetti et al., 2021) were known to be linked to acquired
EGFR-TKI resistance. Mining key regulators that mediate
EGFR-TKI resistance meet the need for new therapeutic
strategies. Cancer immunotherapy brings hope to
eventually cure cancer by artificial stimulation of the
immune system. ICI represents one of the most prominent
treatment strategies. Responses to ICI therapy are not just
dependent on PD-L1 protein expression and tumor mutation
burden (TMB) (Chan et al., 2019), but also affected by T cell
infiltration (Soares et al., 2015), T cell dysfunction, and
neoantigen load (Lauss et al., 2017). Further identification
of key regulators of ICI responses is essential to develop new
targets that enhance efficacy.

In this study, we have built a customized workflow to identify
potential master regulators that drive poor prognosis of patients
with LUAD, based on well-established network inference package
ARACNe (Lachmann et al., 2016) and regulator discovery
method VIPER (Alvarez et al., 2016). This workflow takes
gene expression signatures that are associated with poor
survival of early-stage LUAD, EGFR-TKI resistance, and
responses to immune checkpoint inhibitors, respectively, and
identifies potential master regulators by a regulatory network-
based approach. Our study uncovered possible mechanisms
underlying recurrence, resistance to EGFR-TKI and ICI, and
identified promising therapeutic targets in patients with LUAD.

MATERIALS AND METHODS

Prognostic Signatures for Lung
Adenocarcinoma
To evaluate the degree of overlap among published LUAD
prognostic gene signatures, we have tested 29 signatures
curated in a previous study (Tang et al., 2017)
(Supplementary Table S1). EMT signature was defined as the
overlaps of differentially expressed genes in two datasets. T cell
abundance is estimated by the mean expression of CD8A, CD8B,
GZMA, and GZMB (Rooney et al., 2015). The signature of T cell
dysfunction is taken from a published study (Jiang et al., 2018).
GSE123066 and GSE121634, which were available from NCBI
GEO (https://www.ncbi.nlm.nih.gov/geo/), were used to define a
TKI resistant signature. In dataset GSE123066, EGFR TKI
resistant samples were compared to parental cell lines, and
differentially expressed genes were identified using limma
(version 3.48.1) with default parameters (Ritchie et al., 2015).
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For dataset GSE121634, differentially expressed genes were
identified using DESeq2 (version 1.32.0) (Love et al., 2014)
with default parameters. The EGFR TKI signature was defined
as the genes that were significantly upregulated in both datasets
(FDR < 5%).

Gene Expression Datasets
All gene expression datasets used in this study were publicly
available. Seven lung adenocarcinoma datasets, including
GSE14814 (Zhu et al., 2010), GSE37745 (Botling et al., 2013),
GSE50081 (Der et al., 2014), GSE68465 (Director’s Challenge
Consortium for the Molecular Classification of Lung
Adenocarcinomo et al., 2008), GSE19188 (Hou et al., 2010),
GSE31210 (Yamauchi et al., 2012), and TCGA-LUAD (Cancer
Genome Atlas Research Network, 2014) were used to construct
transcriptional regulatory networks (Supplementary Table S2).
Except for TCGA-LUAD, samples on all other datasets were
profiled with Affymetrix gene expression arrays and pre-
processed with Bioconductor Affy package using the default
parameters.

Identification of Master Regulators
For each LUAD dataset with a reasonablely large sample size (n >
100), the transcriptional regulatory network (TRN) was
constructed using ARACNe-AP (Lachmann et al., 2016) with
default parameters (MI p-value � 10–8, 100 bootstraps). The TRN
for TCGA-LUAD was extracted from the Bioconductor data
package aracne. networks (version 1.18.0). For a given
prognostic signature, patient samples were stratified by the
enrichment of this signature as quantified by Wilcoxon rank-
sum test. The top 50 samples with the highest enrichment
scores were compared to those with the lowest by VIPER
(version 1.26.0) (Alvarez et al., 2016) to identify potential
master regulators with a p-value cutoff of 0.01. With this
workflow, each signature was tested on seven independent
LUAD datasets.

Evaluation of the Workflow
For a robust workflow, statistically equivalent signatures result in
highly concordant master regulators. To evaluate the robustness
of the workflow, we have compared two well-established LUAD
prognostic signatures. One is the top-scoring signature (Xie
signature) (Xie et al., 2011) described in a review study (Tang
et al., 2017), the other one is embryonic stem cell (ESC) signature
(Ben-Porath et al., 2008). Jacard index was used to measure
similarities between master regulators identified from two
signatures. To capture dynamic ranges, 80% of genes were
sampled without replacement from two signatures,
respectively, the resulting master regulators were then
compared using Jacard index. This procedure was repeated
100 times, and the median Jacard index was reported.
Similarly, random signatures sampled from the background
were compared 100 times.

Pathway and Survival Analysis
Hypergeometric test was used to evaluate the enrichment of
pathways in a list of genes. Hallmark and Gene Ontology

(GO) gene sets curated by MSigDB (version 5.0)
(Subramanian et al., 2005; Liberzon et al., 2011; Liberzon
et al., 2015) were used in this study. Given two groups of
samples, the survival difference was compared with the
Kaplan-Meier method, implemented in R package survival
(version 3.2).

Code and Data Availability
The code and data are publicly available at Github (https://github.
com/JiantaoShi/LungMR).

RESULTS

A Robust Workflow to Identify Master
Regulators
Numerous studies have been trying to identify prognostic
signatures for LUAD. Though a significant proportion of them
perform better than random gene sets, few genes are shared. We
have evaluated 29 lung adenocarcinoma signatures curated in a
previous study (Supplementary Table S1) (Tang et al., 2017) and
found only two pairs of signatures shared more than 10% of their

FIGURE 1 | Pairwise comparison of published prognostic gene
signatures for LUAD. All signatures were taken from a review study (Tang et al.,
2017) and the original references were listed in Supplementary Table S1.
Jaccard index was used to quantify the level of overlap between two
signatures and shown as a heatmap (A). The number of genes in each
signature was shown as a bar plot (B).
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genes, as measured by Jaccard index (Figure 1). This is not totally
unexpected, since genes are correlated, and different studies may
identify combinations of different genes. We have built a
workflow to identify master regulators that potentially drive
poor survival in patients with LUAD (Section 2,
Supplementary Figure S1). To demonstrate the effectiveness

of this method, we have tested the best-scoring signature (Xie
signature) (Xie et al., 2011), benchmarked in a previous review
study (Tang et al., 2017). Since it is associated with overall
survival, we have compared it to the embryonic stem cell
(ESC) signature which is known to be associated with poor
survival in multiple cancer types including LUAD (Ben-Porath

FIGURE 2 | A workflow to identify master regulators driving prognosis in patients with LUAD. (A) Comparison of master regulators predicted with two well-
established LUAD signatures, one was the best-scoring signature benchmarked in a previous review study (Xie signature) (Xie et al., 2011), the other is embryonic stem
cells signature (ESC) (Ben-Porath et al., 2008). Both signatures were tested across seven LUAD gene expression datasets and master regulators were identified with a
p-value cutoff of 0.01 (Section 2). The results were summarized to show howmany times amaster regulator was identified and represented as a 2D histogram. (B)
Comparison of master regulators predicted with random signatures. (C) Evaluation of robustness. The Jacard index shows the similarity of master regulators predicted
from subsampling of LUAD signatures (100 times), as well as that from random background.

FIGURE 3 |Master regulators driving prognosis in early-stage LUAD. (A) A Venn diagram of three prognostic signatures for early-stage LUAD. Signature names as
well as the number of genes in each signature were shown. (B) The Venn diagram of activated and repressed master regulators, predicted from three prognostic
signatures for early-stage LUAD. (C) The lists of shared master regulators that are predicted from all three signatures. (D) Expression of shared master regulators is
associated with poor survival in patients with stage I LUAD in dataset GSE14814. Hazard ratio (HR) and log-rank test p-value are also shown.

Frontiers in Bioinformatics | www.frontiersin.org January 2022 | Volume 2 | Article 8139604

Xu et al. Master Regulators in LUAD

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


et al., 2008). The master regulators predicted with these two
signatures are highly concordant, as demonstrated by the two-
dimensional histogram (Figure 2A). For instance, seven master
regulators, including BUB1B, ECT2, MCM6, RACGAP1,
TOP2A, WDR12, and ZWINT, were identified by both
signatures across all seven datasets tested. In contrast, master
regulators predicted from two random signatures have little
overlap. None of the genes that were identified in four or
more datasets were shared (Figure 2B). To further evaluate
the robustness of this workflow, we compared the overlap
between results identified from subsampled Xie signature and
ESC signature (Section 2). For LUAD signatures, the Jacard index
reaches 0.7297 and 0.3988 for activated and repressed master
regulators, respectively; in contrast, a value of 0 was observed for
random signatures (Figure 3C).

Master Regulators Driving Poor Prognosis
in Patients With Early-Stage Lung
Adenocarcinoma
Using the workflow described above, we first explored the master
regulators driving relapses in lung cancer patients in early stages
(stage I/II). We have chosen three gene expression signatures
from the top five best-scoring ones according to a previous review
study (Tang et al., 2017). They are denoted as Lu et al. (2006),
Chen et al. (2011), and Tomida et al. (2004). Interestingly, though
these three gene signatures have no shared genes (Figure 3A), the
predicted master regulators were largely shared (Figure 3B). For
instance, 46 activated master regulators were identified with
signature Tomida et al. (2004), and all of them were included
in results from signature Chen2. Similarly, 41 out of 43 activated
master regulators identified from signature Lu were also
identified by signature Chen2. When overlapping results from
all three signatures, 32 activated and 16 repressed master
regulators were identified (Figure 3C). Many of them have
been reported to be associated with the survival of patients
with LUAD. FOXM1 was demonstrated to be necessary and
sufficient to cause the progression of lung adenomas into invasive
mucinous adenocarcinomas in vivo by activating AGR2
(Milewski et al., 2017). It was also shown to promote LUAD
invasion andmetastasis by upregulating SNAIL (Wei et al., 2015).
EIF4EBP1 (Seki et al., 2010) and HMGA1 (Qiao et al., 2021) were
shown to be potential markers for predicting recurrence and poor
prognosis in stage I LUAD. The activated master regulators are
predominantly enriched with GO term Cell Cycle (p-value <
10–16, Supplementary Table S3), and they generally fall into
three functional categories based on previous studies: cell
proliferation, cell metastasis, and drug resistance. Cell cycle-
related genes such as AURKA, AURKB, GTSE1, CCNA2, and
MYBL2 were shown to promote tumor progression of LUAD
(Musa et al., 2017; Ruan et al., 2017; Galetta and Cortes-Dericks,
2020; Zhang et al., 2021). Some of the predicted master regulators,
including PTTG1 (Li et al., 2013), RFC4 (Liu et al., 2021), TRIP13
(Zhang et al., 2019), BUB1B (Chen et al., 2015), TTK (Tsai et al.,
2020), and ZWINT (Peng et al., 2019) are capable of promoting
migration, invasion, and metastasis of lung cancer cells. CHEK1
(Bartucci et al., 2012), FEN1 (He et al., 2017), and UBE2C (Wu

et al., 2019) were shown to confer chemotherapy resistance in
NSCLC. Chemotherapeutic resistance is usually associated with
overactive HR repair mechanisms, which could be driven by
overexpression of RAD51 (Ward et al., 2015). Furthermore, some
of the predicted master regulators have been tested as potential
drug targets. For example, EZH2 is activated in many cancer
types including LUAD and may serve as an opportunity for
targeted therapy in lung cancer (Zhang et al., 2016). The
expression of predicted master regulators is significantly
associated with poor survival in early-stage LUAD in dataset
GSE14814 (p � 0.0191, Hazard ratio � 2.38) (Figure 3D).

Master Regulators Driving EGFR-TKI
Resistance
We performed differential gene expression between EGFR-TKI
resistant and parental EGFR mutant cell lines using two public
datasets GSE123066 (Becker et al., 2019) and GSE121634
(Nilsson et al., 2020), and defined a new signature as the
shared genes (Figure 4A). This 796-gene signature is
significantly enriched with EMT signaling pathway
(hypergeometric test p-value < 10–16) (Figure 4B), which is an
extensively validated pathway involved in EGFR-TKI resistance.
The master regulators identified with this signature and the EMT
pathway signature were largely shared, as indicated by the 2D
histogram (Figure 4C). AXL and CAVIN1 were identified by
both signatures across all seven datasets tested. AXL is one of the
best-known genes involved in TKI resistance (Zhang et al., 2012)
and it was demonstrated to confers intrinsic resistance to
Osimertinib, a third-generation EGFR TKI that was approved
for the treatment of EGFR-T790M-positive NSCLC (Taniguchi
et al., 2019). At the pathway level, besides EMT signaling
pathway, several known pathways have been recovered
(FDR < 5%) (Figure 4D). For instance, hypoxia was shown to
promote resistance to EGFR inhibition in NSCLC cells via the
histone demethylases (Lu et al., 2018). However, the master
regulators that mediate the effect of hypoxia in lung cancer
remain unelucidated. Our prediction was validated by studies
of these master regulators in other biological systems. AKAP12
(Finger et al., 2015), CTGF (Higgins et al., 2004), ETS1 (Qiao
et al., 2015), PDGFB (Schito et al., 2012), PIM1 (Casillas et al.,
2018), TGFB3 (Schaffer et al., 2003), TGM2 (Jin et al., 2012), and
WISP2 (Fuady et al., 2014) were shown to be essential to mediate
hypoxia effect in various cell systems (Figure 4E). Angiogenesis
pathway was also enriched in top predicted master regulators and
it was known to be an important prognostic factor and
therapeutic target in LUAD. Targeting VEGFR2, the VEGFA
receptor that is essential for endothelial cell functions associated
with angiogenesis, enhances the anti-tumor activity of EGFR-
TKIs in NSCLC with EGFR-TKI resistance (Li et al., 2017).
Angiogenesis-related master regulators identified in this study
such as CCND2, FSTL1, and MSX1 represent new options to
module angiogenesis in LUAD. Consistent with previous studies,
our results show that master regulators in TNF-α signaling
pathway mediate resistance to EGFR inhibition in LUAD
(Gong et al., 2018). TGF-β signal pathway is also identified as
a mechanism of TKI resistance, which has been supported by
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several previous studies (Serizawa et al., 2013). Cancer cells can
increase their production of active TGF-β during the
development of EGFR-TKI resistance, which triggers EMT and
allow the cells to become invasive (Jakobsen et al., 2016).
Interestingly, a group of inflammation master regulators was
predicted to drive EGFR-TKI resistance, including AXL which is
one of the well-known genes involved in TKI resistance, as
described above (Zhang et al., 2012). ITGA5 was known to
promote cancer cell migration and invasion through the FAK/
STAT3/AKT signaling pathway in TKI-resistant NSCLC (Yang
et al., 2021). CCL2, a potent chemokine for macrophages and a
variety of other immune cells, has been reported to play an
indispensable role in the process of TKI resistance (Xiao et al.,
2020). Besides, studies have shown that Notch signaling leads to
acquired resistance to EGFR-TKI and Notch inhibition
overcomes resistance in LUAD (Bousquet Mur et al., 2020).

And there is crosstalk between Notch and Wnt signaling
pathways in EGFR mutant NSCLC (Arasada et al., 2018).

Master Regulators Driving Response in
Immunotherapy
Two signatures were used to identify master regulators
promoting immunotherapy that is based on immune
checkpoint blockade, one quantifying the abundance of tumor-
infiltrating T cells (Rooney et al., 2015), and the other
characterizing T cell dysfunction (Jiang et al., 2018). Activated
master regulators are correlated with higher T cell abundance and
enhanced T cell activity. Six activated master regulators have been
predicted to regulate both signatures across six or more datasets
(Figure 5A), including ARHGAP25, IL16, BTK, IKZF1, ITGAL,
and STK10, most of which were reported to function in immune-

FIGURE 4 |Master regulators driving EGFR-TKI resistance. (A) A new EGR-TKI resistance signature. EGFR-TKI resistant samples were compared to parental cell
lines and the signature was defined as the genes that were significantly upregulated in two independent datasets. (B) Enrichment of EMT pathway in EGFR-TKI
resistance signature. (C) Comparison of master regulators predicted with EGFR-TKI signature and EMT pathway signature. Both signatures were tested across seven
LUAD gene expression datasets and master regulators were identified with a p-value cutoff of 0.01 (Section 2). The results were summarized to show how many
times a master regulator was identified and represented as a 2D histogram. (D) Pathways enriched in top-ranking master regulators predicted using TKI resistance
signature or EMT pathway signature. (E) Selected master regulators grouped by enriched pathways. To avoid redundancy, a gene in multiple pathways was only
assigned to the one with higher significance.

Frontiers in Bioinformatics | www.frontiersin.org January 2022 | Volume 2 | Article 8139606

Xu et al. Master Regulators in LUAD

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


related pathways. IL16 is a chemoattractant for CD4+ cells and a
modulator of T cell activation (Mathy et al., 2000). BTK is known
to be essential for BCR-mediated proliferation and survival. A
recent study showed that BTK can promote T cell activation by
phosphorylation of PLCγ1 upon TCR engagement (Xia et al.,
2020). IKZF1 is a lymphocyte-specific transcription factor that
controls a wide spectrum of immune cell development, especially
CD4+ T cell subsets (Wu et al., 2006). Intriguingly, IKZF1 was
demonstrated to enhance immune infiltrate recruitment in
several cancer types including LUAD, and thus susceptibility
to immunotherapy (Chen et al., 2018). ITGAL is a pan-leukocyte
marker and is involved in a variety of immune phenomena
including T cell-mediated killing. Though its function in
cancer has not been reported, it was shown to play an
essential role in cytotoxic T Cell accumulation and activation
in adipose tissue (Jiang et al., 2014). At the pathway level, immune
system and T cell activation pathways are significantly enriched
in the top-ranking master regulators (Figures 5B,C).

Master regulators that result in lower T cell abundance and
T cell dysfunction are more interesting, since they could be
repressed by inhibitors to enhance cancer immunotherapy.
Seven master regulators, including COPS5, DDX1, GGCT,
MSH2, TAF2, TFB2M, and ZNHIT3, were identified in at
least six datasets with the signature of T cell dysfunction
(Figure 6A). COPS5 is required for TNF-α-mediated PD-L1
stabilization in breast cancer cells and inhibition of COPS5
sensitized cancer cells to anti-CTLA4 therapy (Lim et al.,
2016). MSH2 is a known DNA mismatch repair gene and

mismatch repair deficiency is a predictor of immune response
for anti-PD-1/PD-L1 immunotherapy efficacy (Zhao et al., 2019).
At the pathway level, we found top-ranking master regulators
were enriched with MYC targets, E2F targets, oxidative
phosphorylation, fatty acid metabolism, and mTORC1
signaling (FDR < 5%) (Figure 6B). It has been shown that
MYC amplified tumors are associated with suppressed
immune cell infiltrates in neuroblastoma and melanoma
models (Wu et al., 2021). CBX3 is a putative target of MYC
(Figure 6C) and may serve as a new diagnostic biomarker and a
potential target for immunotherapy in gastric cancer (Lin et al.,
2020). E2F targets are essential regulators of the cell cycle which is
a classical therapeutic target in cancer. ASF1A is one of E2F
targets predicted to repress cancer immunity and was identified as
a critical regulator of sensitivity to anti–PD-1 therapy in LUAD
(Li et al., 2020). Furthermore, researchers found that
pharmacological inhibitors of cyclin-dependent kinase 4
(CDK4) and CDK6 boost tumor immunogenicity (Goel et al.,
2017). The mTOR pathway regulates cancer cell proliferation and
tumor angiogenesis. Clinically, mTOR inhibitor only shows
modest anticancer efficacy due to resistance and
immunosuppressive properties (El Hage and Dormond, 2021),
which suggests that mTOR inhibitors represent a therapeutic
opportunity to promote the efficacy of cancer immunotherapy
(Esfahani et al., 2019). Given the support from previous studies in
other cancer systems, it is worth further testing the pathways and
master regulators predicted by our workflow with comprehensive
experiments.

FIGURE 5 | Master regulators that are associated with enhanced responses in immune checkpoint blockade-based immunotherapy. (A) Comparison of master
regulators predicted from T cell infiltration and T cell dysfunction signatures. The same set of master regulators that were identified in at least six datasets were shown. (B)
Pathways enriched in top-ranking master regulators. The top three most enriched pathways were shown. (C) Selected master regulators grouped by enriched
pathways.
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DISCUSSION

In this study, we have systemically identified master regulators
driving prognosis in patients with LUAD, treated with surgical
resection, EGFR-TKI, and ICB-based cancer immunotherapy.
This network-based workflow is highly robust, and it identified
concordant master regulators from prognostic signatures with no
shared genes. This is an important and unique feature of this
workflow, as signatures tend to be divergent but upstream
regulators can be convergent. Furthermore, running this
workflow requires only gene expression data and predefined
signatures, which make it useful for a variety of biological
systems.

With this workflow, we have found that the majority of the
master regulator driving poor prognosis in early-stage LUAD are
cell-cycle related according to Gene Ontology annotation.
However, they were demonstrated experimentally to promote
a spectrum of processes such as tumor cell proliferation (Musa
et al., 2017; Ruan et al., 2017; Galetta and Cortes-Dericks, 2020;
Zhang et al., 2021), invasion (Li et al., 2013), metastasis (Liu et al.,
2021), and drug resistance (Bartucci et al., 2012; He et al., 2017;
Wu et al., 2019). This analysis not only uncovered the mechanism
of regulation, but also identified novel molecular targets for

treating LUAD. For instance, RAD51 and SPAG5 were
identified to be associated with poor survival in patients with
early stage LUAD but their function in lung cancer has not been
extensively characterized (Qiao et al., 2005; Huang and Li, 2020).
Studies in other cancer types suggest they are promising targets to
follow up. SPAG5 is a mitotic spindle protein, which promotes
cancer cell proliferation and invasion by activating AKT/mTOR
pathway in bladder and hepatocellular cancer (Liu et al., 2018;
Yang et al., 2018). Knocking down SPAG5 increased the S-phase
cell population and decreased the expression of c-MYC target
genes, including the DNA repair proteins RAD51 and BRCA1/2
in triple-negative breast cancer (Li et al., 2019). In NSCLC, miR-
1179 suppresses cancer cell growth and invasion by direct
targeting SPAG5 (Song et al., 2018). Furthermore, SPAG5 was
shown to confer resistance to cisplatin-induced apoptosis in
bladder urothelial carcinoma cells (Liu et al., 2018). Taken
together, SPAG5 represents one of the novel therapeutic
targets that promote poor prognosis in LUAD.

Given the significance of targeted therapy in lung cancer, the
mechanism of EGFR-TKI resistance was extensively
characterized and mainly focused on EMT pathway (Westover
et al., 2018; Weng et al., 2019). It is noted that master regulators
predicted from EGFR-TKI resistance signature and EMT

FIGURE 6 |Master regulators that are associated with poor responses in ICB-based immunotherapy. (A) Comparison of master regulators predicted from T cell
infiltration and T cell dysfunction signatures. The master regulators predicted in at least six datasets with T cell dysfunction signature were shown. (B) Pathways enriched
in top-ranking master regulators. (C) Selected master regulators grouped by enriched pathways.
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pathway signature are largely shared, which suggests that EMT
pathway functions as a hub and interact with other pathways such
as hypoxia, angiogenesis, TNF-α signaling, inflammation, TNF-β
signaling, Wnt, and Notch signaling pathways. Our integrative
analysis not only uncovers key pathways that mediate EGFR-TIK
resistance but also suggests new options to modulate these
pathways to overcome resistance. Some master regulators have
been characterized in NSCLC (Zhang et al., 2012; Yang et al.,
2021), and some have been reported in other cancer types, which
pave the way for successful validation in lung cancer. For
instance, FOXC2 is an EMT regulator (Thiery et al., 2009) and
promotes cell migration and invasion through EMT in breast
cancer, ovarian cancer, prostate cancer, and lung cancer (Hollier
et al., 2013). It also confers chemoresistance in multiple cancer
types, including nasopharyngeal carcinomas (Zhou et al., 2015),
breast cancer (Cai et al., 2015), and lung cancer. It is a promising
therapeutic target to overcome EMT-mediated EGFR-TKI
resistance in LUAD.

With cancer immune signatures, we have identified master
regulators potentially enhance or suppress ICB-based
immunotherapy response in LUAD. ICB was designed to help
the immune system recognize and attack cancer cells (Jiang et al.,
2018). In concordant with this concept, master regulators that
activate the immune system especially T cells are capable of
enhancing immune response. Master regulators that repress
immunotherapy are enriched with MYC targets, E2F targets,
oxidative phosphorylation, and mTOR signaling. The emerging
concept of metabolic modulation of immunity is opening a new
window for cancer immunotherapy (Guerra et al., 2020). Our
prediction suggests that oxidative phosphorylation is a metabolic
target for lung cancer immunotherapy, which has been
demonstrated in melanoma (Najjar et al., 2019). Several genes
in these pathways were demonstrated to be involved in
immunotherapy response, such as COPS5 (Lim et al., 2016),
MSH2 (Zhao et al., 2019), CBX3 (Lin et al., 2020), ASF1A (Li
et al., 2020) and HSP90A (Song et al., 2020). Some of the
predicted master regulators are known to function in cancer
cells, but their role in immunotherapy response is worth further
exploring. For example, SRPK1, an enzyme that phosphorylates
splicing factors rich in serine/arginine domains (SR proteins), is
associated with poor survival in various cancers (Patel et al.,
2019). In lung cancer, SRPK1 inhibition suppresses angiogenesis,

metastasis, and the acquisition of a cancer stem cell phenotype
(Wu et al., 2017; Wagner et al., 2019). SRPK1 is associated with
lung cancer progression by activating the transcriptional activity
of the beta-catenin/T-cell factor (TCF) complex (Liu et al., 2016).
Our prediction suggests that SRPK1 represses immunotherapy
response through the MYC pathway.

The workflow described in this study not only identified well-
characterized master regulators, but also discovered novel ones
that can be potentially tested as therapeutic targets in LUAD. We
believe it can be used on other types of lung cancers such as lung
squamous cell cancers and small cell lung cancer.
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