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DNAmethylation and associated regulatory elements play a crucial role in gene expression regulation. Previous studies have
focused primarily on the distribution of mean methylation levels. Advances in whole-genome bisulfite sequencing (WGBS)
have enabled the characterization of DNA methylation haplotypes (MHAPs), representing CpG sites from the same read
fragment on a single chromosome, and the subsequent identification of methylation haplotype blocks (MHBs), in which
adjacent CpGs on the same fragment are comethylated. Using our expert-curatedWGBS data sets, we report comprehensive
landscapes of MHBs in 17 representative normal somatic human tissues and during early human embryonic development.
Integrative analysis reveals MHBs as a distinctive type of regulatory element characterized by comethylation patterns rather
than mean methylation levels. We show the enrichment of MHBs in open chromatin regions, tissue-specific histone marks,
and enhancers, including super-enhancers. Moreover, we find thatMHBs tend to localize near tissue-specific genes and show
an association with differential gene expression that is independent of mean methylation. Similar findings are observed in
the context of human embryonic development, highlighting the dynamic nature of MHBs during early development.
Collectively, our comprehensive MHB landscapes provide valuable insights into the tissue specificity and developmental
dynamics of DNA methylation.

[Supplemental material is available for this article.]

DNA methylation, a crucial epigenetic modification, plays an im-
portant role in maintaining cell identity across diverse tissue types
(Robertson 2005; Ziller et al. 2013). In normal cells, DNA methyl-
ation is dependent on local CpG density. The human genome can
be segmented into distinct functional elements based on mean
methylation levels: unmethylated regions with high CpG density
(UMRs; such as CpG islands), low-methylated regions (LMRs), par-
tially methylated domains (PMDs), and high-methylated regions
(HMRs) (Burger et al. 2013). UMRs, which are often proximate to
core promoters, play a pivotal role in transcriptional regulation.
Recently, a study of 205 healthy tissues identified unique methyl-
ation markers predominantly in UMRs (Loyfer et al. 2023). Long
UMRs, spanning >3.5 kb, are also known as DNAmethylation can-
yons (DMCs) and are intricately connected with highly conserved
and developmentally important genes (Jeong et al. 2014; Wiehle
et al. 2016). LMRs show an average methylation of 30% (Stadler
et al. 2011) and are often located distally to promoters and en-
riched in binding sites for cell type–specific transcription factors.

Recent advances in sequencing-based techniques, such as
whole-genome bisulfite sequencing (WGBS), have allowed DNA

methylation to be measured at the level of individual reads, yield-
ing single-nucleotide resolution (Bock 2012; Smith et al. 2017).
Unlike the conventional approach of quantifying mean methyla-
tion,which aggregates the detected signal,WGBShas the potential
to characterize DNA methylation haplotypes (MHAPs) (Zhang
et al. 2021b). These MHAPs are defined as CpGs on the same
read fragment originating from a single chromosome. Several
read-level metrics have been proposed to quantify the characteris-
tics ofMHAPs in a heterogeneous population of cells. For instance,
the proportion of discordant reads (PDR) quantifies methylation
heterogeneity, explaining more expression variation than mean
methylation, as exemplified in chronic lymphocytic leukemia
(Landau et al. 2014).

In addition to the locally disordered methylation described
above, adjacent CpGs on the same DNA molecules can be highly
correlated, forming methylation haplotype blocks (MHBs) charac-
terized by comethylation at the fragment level (Guo et al. 2017).
The comethylation pattern can be determined using linkage dise-
quilibrium (LD) analysis of epialleles, with LD R2 calculated based
on phased DNA methylation data (Shoemaker et al. 2010). MHBs
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are characterized by a predominance of fully methylated or unme-
thylated MHAPs in the sequencing reads. MHBs have shown
promise as plasma DNA biomarkers for noninvasive early cancer
detection (Wu et al. 2022). AlthoughMHBs are associated with en-
hancers (Guo et al. 2017), their functional roles remain largely un-
explored, especially in the regulation of cell type–specific gene
expression in normal tissues and during embryonic development.

Here, we identified MHBs from 17 representative normal tis-
sues and human preimplantation embryos using well-curated
WGBS data sets. We aim to characterize the tissue-specific regula-
tory potential of MHBs through large-scale data integration. We
examined MHB enrichment in open chromatin regions, associa-
tionwith gene expression, and tissue-specific genes in comparison
to known DNAmethylation–associated regulatory regions such as
UMRs and LMRs.

Results

A landscape of MHBs established for 17 representative human
normal tissues
Local CpG sites can show comethylation, quantified by LD of epi-
alleles in DNA MHAPs, with LD R2 calculated from phased DNA
methylation statuses (Supplemental Fig. S1A). For example, if
two CpG sites covered by 18 sequencing reads are either both
methylated (n= 11) or both unmethylated (n =7), they are consid-
ered significantly comethylated (R2 = 1, P=0.0008) (Fig. 1A, left
panel). These comethylated CpG regions are called DNAmethyla-
tion haplotype blocks (MHBs) (Guo et al. 2017), characterizing
CpG interdependence within a heterogeneous population (Fig.
1A, right panel; Supplemental Fig. S1B,C). To systematically inves-
tigate MHB profiles across human tissues, we characterized read-
level methylation patterns across 17 representative normal tissue
types using 72 expert-curatedWGBS samples (Fig. 1B; Supplemen-
tal Tables S1, S2). We identified a total of 109,978 MHBs with a
minimum of five CpGs required per block (Fig. 1C; Supplemental
Table S3), mostly with low (<0.2) or intermediate (0.2∼0.8) meth-
ylation levels across all tissue types (Fig. 1D). More MHBs were dis-
covered in the colon and placenta than in other tissues, and this
observation was independent of sequencing depth (Supplemental
Fig. S2A). Themajority of theseMHBswere <100 bp,with amedian
length of 50–70 bp (Supplemental Fig. S2B). Approximately 25%
of tissue MHBs were located in promoters, indicating their poten-
tial regulatory functions, which are further supported by their
prevalence in distal regions where enhancers are located (Fig.
1E). To validate the robustness of the MHBs identified in each tis-
sue, we curated independentWGBSdata sets for adipose, heart, liv-
er, and lung tissues (Supplemental Table S1). Using region-set
enrichment analysis via locus overlap analysis (LOLA) (Sheffield
and Bock 2016), we showed that MHBs identified from these
four tissues were specifically enriched with the highest signifi-
cance inmatched tissues (Fig. 1F; Supplemental Fig. S2C,D). Given
the potential sharing of MHBs across different tissues, we com-
bined them into 58,385 nonoverlappingMHBs, whichwere subse-
quently categorized into 23 clusters comprising 17 tissue type-
specific clusters (n = 42,093) and six common clusters shared by
multiple tissue types (n= 16,292) (Fig. 1G). In addition, tissue-spe-
cific MHBs showed a tendency toward hypomethylation in their
respective tissues of origin (Supplemental Fig. S2E). DNAmethyla-
tion–mediated genomic imprinting is known to generate parent-
of-origin-specific methylation regions, which are frequently iden-
tified as MHBs.We compared theMHB clusters to known imprint-

ed loci and found that all clusters contain a very low fraction of
imprinted genes, except for cluster 23, which consists ofMHBs pre-
sent in 15 or more tissue types (Fig. 1H; Supplemental Fig. S2F).

Tissue MHBs represent distinct regulatory elements
Motivated by the enrichment of MHBs within regulatory regions
such as promoters and enhancers (Supplemental Fig. S3A), we
compared MHBs to open chromatin regions, which are known
to be accessible to regulatory proteins (Buenrostro et al. 2013). In
15 out of 17 tissue types, >60% of MHBs overlapped with chroma-
tin regions defined as accessible by ATAC-seq in their respective tis-
sue types (Supplemental Fig. S3B; Supplemental Table S2). This
observation was further supported by our analysis of nucleo-
some-free regions (NFRs) (Tarbell and Liu 2019), which covered
>48%ofMHBs in 14 out of 17 tissue types (Supplemental Fig. S3C).

Segmented DNA methylation states, such as UMRs and
LMRs, are known to be enriched in active regulatory elements
(Lister et al. 2009). We examined the overlap of tissue MHBs and
DNA methylation region annotations, including UMRs, LMRs,
PMDs, and HMRs (Supplemental Table S2). DNA methylation
states were defined purely by mean methylation, and most of
the genome was annotated as PMDs (Supplemental Fig. S3D;
Zhou et al. 2018). Our results show that MHBs are mainly located
in UMRs, LMRs, and PMDs, which collectively accounted for
∼75% of MHBs in each tissue type (Supplemental Fig. S3E).
Next, we compared the enrichment of open chromatin in MHBs
and DNA methylation state regions while controlling for con-
founding factors such as region size and methylation level.
MHBs showed greater enrichment in open chromatin than any
other DNA methylation–associated regions, including UMRs and
LMRs (Fig. 2A). For instance, at a mean methylation level of
0.25, 81.5% of CpG sites in MHBs were covered by ATAC-seq
peaks, whereas the proportions in UMRs and LMRs were 53%
and 60.5%, respectively. This pattern was highly robust across all
individual tissue types (Supplemental Fig. S4), suggesting that
MHBs represent regulatory elements defined by DNAmethylation
patterns rather than by average methylation levels. When open
chromatin regions were categorized based on their overlap with
UMRs/LMRs, MHBs, or neither, those coexisting with MHBs dis-
played greater enrichment for H3K4me3 and H3K27ac histone
modifications (Fig. 2B; Supplemental Fig. S5A).

To explore whether MHBs mediate long-range chromatin
contacts, we compared MHBs to publicly available data sets gener-
ated by chromatin interaction analysis by paired-end tag sequenc-
ing (ChIA-PET). Chromatin contacts in B cells (ENCFF507KYL)
were most significantly enriched in B cell MHBs, indicating a tis-
sue-specific regulatory role of MHBs (Fig. 2C). One case in point
is the MHB downstream from CRELD1 (Chr 3: 9,969,000–
9,995,000), which ChIA-PET indicated contacts the promoter re-
gion through long-range interactions. This MHB showed partial
methylation and was flanked by HMRs (Fig. 2D).

To further investigate the regulatory roles of MHBs, we
examined the overlap of tissue MHBs with annotations for seven
different histone modifications (Supplemental Table S1), includ-
ing H3K4me3, H3K27ac, H3K4me1, H3K36me3, H3K27me3,
H3K9me3, and H3K9ac. Cumulatively, >70% of MHBs in 15 out
of 17 tissues overlapped H3K4me3, H3K27ac, or H3K4me1 peaks,
suggesting their roles in promoters and enhancers (Supplemental
Fig. S5B). LOLA revealed that MHBs showed significant enrich-
ment inH3K27ac peaks frommatched tissues in 12 out of 17 tissue
types (Fig. 2E). As a control, we observed a similar pattern for LMRs
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but not for other DNA methylation–associated elements, includ-
ing UMRs, PMDs, and HMRs (Supplemental Fig. S5C).

We also compared the patterns ofMHBs and chromatin anno-
tated as active enhancers (EnhA1) by The ENCODE Project (The

ENCODEProjectConsortium2012; Boix et al. 2021). Tissue-specific
enrichment was observed in 15 out of 17 tissues (Fig. 2F;
Supplemental Fig. S6). To explore the functional changes in en-
hancers associated with the presence of MHBs, we categorized
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Figure 1. MHB landscapes identified in 17 representative human normal tissues. (A) Schematic of MHB patterns. The left panel shows an example of
linkage disequilibrium (LD) between two CpG sites. A region (Chr 7: 2,571,065–2,571,120) with four CpG sites is depicted with a lollipop plot of 18 se-
quencing reads, in which black circles represent methylated cytosines and white circles represent unmethylated cytosines. The second and third CpG sites
are comethylated, as indicated by the signed LD R2. Statistical significance was assessed using a binomial test. N11 indicates the number of MHAPs that are
methylated at both CpG sites; the numbers of MHAPs of the other three types are also shown. The right panel shows an example of an MHB in colon tissue
(Chr 7: 2,571,000−2,571,700). The top part shows the coverage andmean CpGmethylation of each CpG site, and themiddle part displays the DNAmeth-
ylation status of the individual fragment, in which black and white represent methylated and unmethylated CpG sites, respectively. The bottom part shows
the heatmap of the signed LD R2 score between pairs of covered CpG sites. (B) Body map showing analyzed normal tissue types and sample sizes. Panel
created with BioRender (https://www.biorender.com). (C ) Number of MHBs identified per tissue type. (D) Bar plots illustrating the proportion of MHBs in
low (<0.2), intermediate (0.2–0.8), and high (>0.8) methylation groups. (E) Bar plots illustrating the proportions of MHBs annotated to different genomic
features. (F) Validation of MHBs in four tissue types using independent data sets. Enrichment was determined by the R package LOLA, using the union of
MHBs from all tissue types as the background. To preclude computing the logarithm of zero, FDR values of zero were converted to 10−300 before logarith-
mic transformation. (G) Categorization of MHBs into 23 nonoverlapping clusters. The number of regions in each cluster is shown. (H) A bar plot illustrating
the enrichment of MHBs in the loci of imprinted genes, with fold enrichment evaluated using rGREAT.
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enhancers based onMHB overlap.MHB-overlapping enhancers dis-
played greater enrichment in open chromatin regions. For example,
at ameanmethylationof 0.6, 82%ofCpGsites inMHB-overlapping
enhancers were covered by ATAC-seq peaks compared with 62% for
nonoverlapping enhancers (Fig. 2G). Furthermore, we examined
the tissue specificity of MHBs through comparison to cis-regulatory
elements (CREs) previously defined using single-cell ATAC-seq
(Zhang et al. 2021a). TheseCREs, selected from65 cell clusters span-
ning 15 tissue types, were subjected to LOLA, which revealed that
MHB enrichment inmatched tissues ranked among themost signif-
icant for 13 out of 15 tissue types (Supplemental Fig. S7). Finally, we
compared MHBs to super-enhancers, a unique enhancer type with
unusually high levels of mediator binding, as measured by ChIP-
seq (Pott and Lieb 2015). Tissue-specific enrichment was observed
in all 15 tissue types, further supporting the notion that MHBs rep-
resent regulatory elements associated with DNA methylation pat-
terns (Fig. 2H; Supplemental Fig. S8).

DNA motifs identified in tissue MHBs
Given the enrichment of regulatory elements in MHBs, we next
sought to identify MHB-associated transcription factors through
DNA motif analysis. Using the union of all tissue MHBs as back-
ground, 58 significant motifs were identified, of which 53 were en-
riched exclusively inone specific tissue (Fig. 3A; Supplemental Table
S4). Our predictions were supported by data from previous studies
(Kohyama et al. 2009; Grainger et al. 2010; El-Khairi et al. 2012;
Haldar et al. 2014; Shan et al. 2017; Elmen et al. 2020; Hunter
et al. 2022), showing the tissue-specific relevance of the predicted
factors. For example, the motif for CDX2, an intestine-specific tran-
scription factor critical for intestinal epithelium development and
differentiation, particularly in the colon (Grainger et al. 2010),
was significantly enriched in colon MHBs (P=1×10−4). The motif
for CNOT4, which regulates cardiac gene expression and protein
levels (Elmen et al. 2020), was significantly enriched in heart
MHBs (P=1×10−4). Themotif for LIN28A, an RNA-binding protein
that is highly expressed in germ cells during early human ovary de-
velopment (El-Khairi et al. 2012),was significantly enriched inovar-
ian MHBs (P=1×10−3). The motif for SPIC, a SPI1 (also known as
PU.1)-related transcription factor that controls the development
of white blood cells such as macrophages (Kohyama et al. 2009;
Haldar et al. 2014), was significantly enriched in spleen MHBs (P=
1×10−7). The motif for RUNX3, a key factor for the activation of
the cytotoxic program in T cells (Shan et al. 2017), was significantly
enriched in the MHBs of T cells (P=1×10−3). Finally, motifs for
both isoforms of HNF4, a master regulator of liver development en-
coded by the genes HNF4A and HNF4G (Hunter et al. 2022), were
significantly enriched in liver MHBs (P=1×10−7).

To validate the regulatory motifs identified in tissue MHBs,
we compared them to transcription factor binding regions defined
by ChIP-seq assays. Specifically, we analyzed HNF4A binding sites
that were previously profiled in liver tissue using ChIP-seq (ob-
tained from the NCBI Gene Expression Omnibus [GEO; https://
www.ncbi.nlm.nih.gov/geo/] under accession number GSE96260).
We found that these regions (83,721 peaks) were specifically and
significantly enriched within liver MHBs with a high level of sig-
nificance (P<1× 10−322). This tissue specificity was not observed
for LMRs, as HNF4A binding sites were similarly enriched in liver
and pancreas LMRs (Fig. 3B). In addition, when liver MHBs were
categorized into three groups based on their overlapwith super-en-
hancers and conventional enhancers (Fig. 3C), we observed signif-
icant enrichment of HNF4A peaks in all three groups of liverMHBs

(Fig. 3D). As a control, LMRs showed lower levels of enrichment in
two out of three groups compared with MHBs when the same an-
alytical procedure was applied. The enrichment of HNF4A peaks
within nonenhancer groups may be attributable to the presence
of MHBs in promoter regions and incomplete coverage of enhanc-
ers in current databases.

Weadditionallyvalidated anotherpredicted transcription fac-
tor, HNF4G, in liver MHBs using public ChIP-seq data (GEO;
GSE105440) (Supplemental Fig. S9A–C). Furthermore, we focused
on RUNX3, whose motif was enriched in T cell MHBs (P<1×
10−107). As only public B cell RUNX3 ChIP-seq data (GEO;
GSM1010893) were available (Pope et al. 2014), we used these
data for comparison. We found that RUNX3 peaks were enriched
with the highest level of significance in B cell MHBs, followed by
T cells (P<1×10−287) (Supplemental Fig. S9D–F). As a complemen-
taryapproach tovalidate the above findings,wecomparedMHBs to
peaks of chromatin-associated proteins, such as transcription fac-
tors and their coactivators, using ChIP-seq data from The
ENCODE Project (Supplemental Table S1). We found that MHBs
tended to be enriched in ChIP-seq peaks from the matched tissues
with the highest significance (Fig. 3E; Supplemental Fig. S10). For
example, of 14 transcription factor-binding sites profiled in liver
tissue, 13 showed peak enrichment specifically in liver MHBs and
LMRs. Moreover, when stratified by MHB overlap, LMRs overlap-
ping MHBs showed stronger ChIP-seq signals for all factors except
RAD21 (Supplemental Fig. S11A). As a control, when we selected
regions with similar mean methylation (0.3∼0.45) (Supplemental
Fig. S11B), similar results were observed (Fig. 3F).

Tissue MHBs informative of gene expression
It is well established that promoter DNA methylation is negatively
correlated with gene expression. Therefore, we investigated whether
MHBs are associated with gene expression. For each tissue, promot-
ers were categorized into three groups by mean methylation: low
methylation (<0.2), intermediate methylation (0.2–0.8), and high
methylation (>0.8). Each group was further divided based on the
presence of MHBs in promoters. For each group with similar DNA
methylation levels, the presence of an MHB correlated with higher
gene expression across nearly all tissue types examined (Fig. 4A; Sup-
plemental Fig. S12; Supplemental Table S2). Themost significant dis-
tinctions in expression were observed in the high-methylation
group (P=1.8×10−9), followed by the intermediate-methylation (P
=1×10−7) and low-methylation groups (P=0.024) (Fig. 4B). To val-
idate our findings, we used the group assignment from T cell
WGBS data to examine the distribution of gene expression in
scRNA-seq data (GEO; GSE98638) (Zheng et al. 2017). We found
that genes withMHBs showed significantly higher expression levels
than did genes with similar mean methylation levels but without
MHBs (Fig. 4C; Supplemental Fig. S13A; Supplemental Table S2).

We further investigated the associations of MHBs with differ-
entially expressed genes (DEGs). We first identified 2009 DEGs
(|log2FC| > 1, FDR<5%) using public B cell (n =4) and T cell (n =
8) RNA-seq data. Then, comparing DNA methylation between T
cells and B cells, we identified 110 DEGs that were not annotated
with any differentially methylated regions (DMRs) (FDR>5%,
Δbeta < 0.01) (Fig. 4D; Supplemental Table S5). Among 99 genes
without MHBs in T cells, 44 were up-regulated, whereas all 11
genes with MHBs in T cells were significantly up-regulated (P=
5.6×10−4, Fisher’s exact test) (Fig. 4D; Supplemental Fig. S13B).

To investigate whether MHBs are enriched in the regulatory
loci of tissue-specific genes, we used GTEx data (The GTEx
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Consortium 2020) to define such genes. Of the 17 tissue types
with defined MHBs, 14 were represented in the GTEx data set
(Supplemental Table S6). We performed gene set enrichment
analysis using the rGREAT tool (McLean et al. 2010) and found

thatMHB enriched tissue-specific genes in 13 out of 14 tissues ex-
amined, yielding a prediction sensitivity of 92.86%. Predictions
were considered false positives when the highest enrichment
was observed for unmatched tissue types. We identified two false
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Figure 3. DNA motifs identified in tissue MHBs. (A) Representative DNA motifs enriched in tissue MHBs. HOMER was used to identify significantly en-
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positives for MHBs, resulting in a prediction specificity of 98.9%
(Fig. 4E). Compared with other DNA methylation–associated
regulatory elements, MHBs showed the highest sensitivity and
comparable specificity (Fig. 4F; Supplemental Fig. S13C).
Recently, a DNA methylation atlas of normal human tissues
was used to identify cell type–specific markers for 39 cell types
(Loyfer et al. 2023). In terms of prediction sensitivity, MHBs
were highly competitive compared with the data from this atlas

and outperformed it even when the top 25, 250, or 1000 markers
were used (Fig. 4F).

Regulatory importance of MHBs in human embryonic
development
To further explore the regulatory roles of MHBs in human tissues,
we characterized their dynamics during human embryonic
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development. Using a publicly available data set, we identified
MHBs in early human embryos at different developmental stages
(Fig. 5A; Supplemental Fig. S14A; Supplemental Table S2) and val-
idated these results by analyzing single-cell data (FDR<5%) (Guo
et al. 2014; Zong et al. 2022). Among the nine stages examined,
five showed robust enrichment in the same cell typewith the high-
est significance (Fig. 5B).

We observed that although the global meanmethylation lev-
els were higher in sperm than in oocytes (Supplemental Fig. S14B),
an inverse trendwas evident inMHB regions (Fig. 5C), suggesting a
distinct role for MHBs in early embryonic development. Given the
observation that MHBs were enriched in regions of open chroma-
tin in somatic tissues, we tested whether a similar pattern persisted
in early human embryos. We analyzed a single-cell data set
that quantifies chromatin accessibility through GCH site (GCA/
GCT/GCC)methylation (Li et al. 2018).We found that the centers
of MHB regions showed peaks of GCHmethylation in all cell types
after fertilization (Fig. 5D), indicating an enrichment of MHBs in
open chromatin. We observed a lower level of GCH methylation
in the centers of MHBs in sperm, which could be explained by
a higher degree of chromatin packing at the global scale, including
within the regions around transcription start sites (TSSs)
(Supplemental Fig. 14C).

Next, we investigated the relationship between MHBs and
DMRs that were identified by comparing adjacent embryonic stag-
es. Approximately 25% of MHBs overlapped DMRs at each stage,
except zygotes, in which 75% overlapped (Fig. 5E; Supplemental
Fig. S14D). Furthermore, >40% of MHBs in most stages were local-
ized within 5 kb of DMRs (Fig. 5F).Whenwe focused onMHBs not
overlapping with DMRs, >50% were located within the gene loci
defined the DMRs (Fig. 5G).

Finally, we investigated the association between gene expres-
sion andMHBs in early human embryos. For a group of genes with
highly methylated (>0.8) promoter regions, we found that the
presence of MHBs was associated with a higher level of gene ex-
pression (P= 0.0028) (Fig. 5H; Supplemental Table S7). Moreover,
we observed that MHBs at each stage were enriched within the
loci of stage-specific genes during embryonic development (Fig.
5I,J; Supplemental Table S8). Imprinted regions, characterized by
differential DNA methylation between maternal and paternal al-
leles, were often identified as MHBs. For instance, multiple
MHBs were consistently identified at various stages of human pre-
implantation embryo development in the locus of KCNQ1, a
known imprinted gene (Fig. 5K; Guo et al. 2014). Three MHBs in
this locus were identified in sperm, which is haploid, indicating
that these three MHBs are maintained throughmechanisms other
than imprinting.

Discussion
To date, DNA methylation–associated regulatory elements have
been identified mainly using the distribution of mean methyla-
tion, which has resulted in the identification of UMRs and LMRs
located in promoters and enhancers, respectively. In this study,
we characterized MHBs with our previously developed toolkit
(Ding et al. 2022) in 17 normal somatic tissues and human preim-
plantation embryos and showed that they represent a distinct type
of regulatory element defined by DNA methylation patterns.
MHBs are more enriched in open chromatin regions than previ-
ously defined DNA methylation–associated regulatory elements,
such as UMRs and LMRs, regardless of their mean methylation

levels. MHBs show tissue-specific enrichment in enhancers, as
represented by H3K27ac ChIP-seq peaks, CREs identified by sin-
gle-cell ATAC-seq, and chromatin states learned by ChromHMM
and annotated as enhancers. This finding was further supported
by the observed tissue-specific enrichment in super-enhancers.
Furthermore, MHBs are enriched in tissue-specific genes with
high sensitivity.

When MHBs were categorized into three groups based on
overlap with super-enhancers and conventional enhancers, non-
enhancer groups also showed enrichment for transcription factor
binding peaks. This could potentially be explained by incomplete
coverage of enhancers in current databases, as nonenhancer LMRs
displayed a similar enrichment pattern. Additionally, ∼25% of
MHBswere located in promoter regions, which also harbor enrich-
ment for transcription factor binding sites.

In individual samples, the presence of MHBs is associated
with higher expression levels of genes with similar methylation
in their promoters, indicating regulatory effects that are indepen-
dently explained by MHBs. Globally, promoter methylation was
negatively correlated with gene expression, particularly for gene
promoters without MHBs. For gene promoters with MHBs, gene
expression did not clearly correlate with promoter methylation.
A potential explanation is that gene promoters with MHBs tend
to overlap with open chromatin regions. This allows the engage-
ment of other factors that influence transcription (de Mendoza
et al. 2022), including chromatin remodeling complexes and en-
hancers (Barral and Déjardin 2023), providing an alternative regu-
latory pathway. Thus, the conventional inverse relationship
between promotermethylation and expression appears to bemod-
ulated by the dynamic interactions of chromatin remodelers when
MHBs are present. This also suggests that genes with MHBs can be
either up-regulated or down-regulated, depending on the function
of transcription factors or cofactors binding in the open
chromatin.

The exact mechanisms underlying MHB generation and
maintenance remain unclear despite the described features.
Concurrent DNA methylation and demethylation can yield dis-
cordant reads (Shi et al. 2021). Thus, mutual exclusivity between
these processes (Ginno et al. 2020) may produce fully unmethy-
lated or methylated reads, forming MHBs. Additionally, neuronal
enhancers undergo demethylation and are hotspots for DNA sin-
gle-strand break repair (Wu et al. 2021), whose features resemble
those of MHBs. Recently, mathematical modeling and stochastic
simulation suggested that local correlation of CpG methylation
maintenance rates results in methylation-correlated blocks
(Busto-Moner et al. 2020; Ren et al. 2022), potentially contributing
to MHB formation.

This study is subject to limitations arising from the data sets
and methodology used. First, the inclusion of curated data sets
from various sources introduces inherent heterogeneity.
Additionally, the used tool does not differentiate between paternal
and maternal fragments, potentially misidentifying imprinted re-
gions as MHBs. Approximately 1% of the identified MHBs are esti-
mated to overlap with known imprinted regions. Second, the
identification ofmatched plus andminus strands poses challenges
in bulk WGBS data, potentially leading to the identification of
hemi-methylated regions as MHBs. Despite these limitations, the
findings of our study strongly support the notion that MHBs rep-
resent a distinct category of regulatory elements characterized by
comethylation patterns. This assertion is robustly shown across
human normal tissues and during early human embryonic
development.
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Methods

Data sources
All data sets used in this study are publicly available, with details
listed in Supplemental Table S1. We collected public WGBS sam-
ples from 17 different normal human tissues: adipose (n=4), adre-
nal gland (n=5), breast (n =3), B cell (n =5), colon (n=4),
esophagus (n=4), heart (n =4), lung (n= 5), liver (n =5), ovary (n
=4), pancreas (n=4), placenta (n=6), spleen (n=5), stomach (n
=6), T cell (n =4), thyroid gland (n=2), and thymus (n=2). Bulk
BS-seq data for human early embryos were downloaded from
GEO accession number GSE49828 (Guo et al. 2014). Processed
ChIA-PET data for B cells were downloaded from ENCODE (The
ENCODE Project Consortium 2012; https://www.encodeproject
.org) under accession number ENCFF507KYL. ATAC-seq and
ChIP-seq data of histone marks were downloaded from the NCBI
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih
.gov/geo/), Roadmap (Roadmap Epigenomics Consortium et al.
2015), ENCODE, and CistromeDB (Mei et al. 2017). CREs in nor-
mal tissues were taken from a previous study (Zhang et al.
2021a). Active enhancers (EnhA1) and super-enhancers were
downloaded from the EpiMap (Boix et al. 2021; https://compbio
.mit.edu/epimap/) and SEdb (Jiang et al. 2019; https://bio.liclab
.net/sedb/) databases, respectively. Preprocessed bulk RNA-seq
data of normal tissues were downloaded from EpiMap (Boix et al.
2021). Single-cell RNA-seq data of T cells were downloaded from
GEO accession number GSE98638 (Zheng et al. 2017). When ap-
plicable, the genomic coordinates of the downloaded regions
were converted to the corresponding hg19 coordinates by
liftOver (Kent et al. 2002).

A full list of samples along with their corresponding codes
and all processed data, including MHAP files, can be found in
Supplemental Table S2. The mHapSuite software is available in
the Supplemental Code S1 and at GitHub (https://github.com/
yoyoong/mHapSuite).

Data preprocessing
The public raw SRA files were downloaded from NCBI GEO and
converted to FASTQ files using the SRA Toolkit (v2.9.1) followed
by quality control using FastQC (v0.11.8). Sequence adapters
and low-quality reads were trimmed by Trim Galore! (v0.6.2;
https://github.com/FelixKrueger/TrimGalore) in paired-end or
single-end mode with default parameters. Trimmed sequences
were aligned to hg19with BSMAP (Xi and Li 2009)with the follow-
ing options: -q 20 -f 5 -r 0 -v 0.05 -s 16 -S 1. Duplicate reads were
marked by Sambamba (v0.7.1) (Tarasov et al. 2015). Mean CpG
methylation levels were extracted using MethylDackel (v0.5.0;
https://github.com/dpryan79/MethylDackel).

Identification of DMRs
DMRs were identified by using metilene (v0.2-8; -t 10 -c 2 -m 5)
(Jühling et al. 2016). Only DMRs with Q-values < 0.05, Δbeta >
0.1, and five or more CpG sites were considered for further analy-
sis. The genome of each tissue type was segmented into PMDs,
LMRs, and UMRs by using the MethylSeekR tool (version 1.32.0)
with default parameters (Burger et al. 2013). Excluding UCSC-an-
notated genomic gaps, the remaining regions were defined as
HMRs.

Identification of DNA MHBs
BAM files were converted to MHAP files with mHapTools (v1.0)
(Zhang et al. 2021b). MHBs were identified using the
“MHBDiscovery” module of mHapSuite (v2.0; https://github

.com/yoyoong/mHapSuite), a Java implementation of mHapTk
(Ding et al. 2022), with the default parameters (‐‐window 5 ‐‐

r_square 0.5 ‐‐p_value 0.05). Genome-wide tracks were built with
the “genomeWide”module of mHapSuite with default parameters
(‐‐minK 1 ‐‐maxK 10 ‐‐K 4).

Motif enrichment
HOMER (Heinz et al. 2010) software was used to identify enriched
motifs in tissue-specific MHBs using the union of MHBs from all
tissues as the background. For each tissue type, the top 10most sig-
nificant motifs were selected for further analysis (P<0.05).

Region set enrichment analysis
Statistical analysis was conducted using R statistical software ver-
sion 4.1.0, together with Bioconductor library version 3.14 (R
Core Team 2021). P-values were adjusted using the Benjamini–
Hochberg procedure, resulting in Q-values or FDR (Benjamini
and Hochberg 1995). The R package LOLA (Sheffield and Bock
2016) (v1.22.0) was used to test the enrichment of a query region
set in a database of reference region sets. Q-values <5% were con-
sidered to indicate statistical significance. To show tissue specific-
ity, Q-values were ranked, and the top k tissues with the highest
significancewere highlighted, where kwas dependent on the data-
base size, typically representing∼5% of the total number of tissues
analyzed. In case of tied ranks, more than k tissues may be high-
lighted. The specific k used in each data set is indicated in the fig-
ure legends.

The computeCpgCov function in mHapSuite was used
to evaluate enrichment of a query region set in open chromatin
regions while controlling for region size and mean methylation
levels. First, query region CpG sites were binned by mean
methylation levels. Then, in each quantile, the fraction of CpG
sites covered byopen chromatin regionswas calculated. The result-
ing curve indicated the fraction of CpGs covered by open chroma-
tin across stratified mean methylation levels.

For the enrichment of genomic features in tissueMHBs, a per-
mutation-based method was used to evaluate the enrichment of a
reference set within a query set. Briefly, the “shuffle” function in
BEDTools (version 2.25.0) (Quinlan and Hall 2010) was used to
generate 1000 random sets matching the query set size. The ex-
pected overlap was the average overlap between the reference
and random sets. The enrichment score was defined as the ratio
of observed and expected numbers of overlapping regions. The
permutation test P-value was defined as the fraction of random
sets that overlap more regions with the reference set than the que-
ry set.

Prediction of tissue specificity with methylation-associated
genomic features
Tissue-specific genes were identified by applying the R package
TissueEnrich (Jain and Tuteja 2019) to the GTEx data set (The
GTEx Consortium 2020). Each gene was assigned a basal regulato-
ry domain of 5 kb upstream of and 1 kb downstream from the TSS.
This regulatory domain was extended in both directions to the
nearest gene’s basal domain, up to a maximum of 1 Mb (McLean
et al. 2010). The rGREAT R package (Gu and Hubschmann 2023)
with default parameters was used to assess the enrichment of tis-
sue-specific genes in defined sets of regions, including MHBs,
UMRs, LMRs, PMDs, HMRs, and Atlas (Loyfer et al. 2023). We cal-
culated the enrichment rank for each tissue with tissue-specific
genes, and the top-ranked tissue typewas considered the predicted
tissue. The sensitivity and specificity were determined to evaluate

Feng et al.

2050 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on December 27, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278146.123/-/DC1
https://www.encodeproject.org
https://www.encodeproject.org
https://www.encodeproject.org
https://www.encodeproject.org
https://www.encodeproject.org
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://compbio.mit.edu/epimap/
https://compbio.mit.edu/epimap/
https://compbio.mit.edu/epimap/
https://compbio.mit.edu/epimap/
https://bio.liclab.net/sedb/
https://bio.liclab.net/sedb/
https://bio.liclab.net/sedb/
https://bio.liclab.net/sedb/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278146.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278146.123/-/DC1
https://github.com/yoyoong/mHapSuite
https://github.com/yoyoong/mHapSuite
https://github.com/yoyoong/mHapSuite
https://github.com/yoyoong/mHapSuite
https://github.com/yoyoong/mHapSuite
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/dpryan79/MethylDackel
https://github.com/dpryan79/MethylDackel
https://github.com/dpryan79/MethylDackel
https://github.com/dpryan79/MethylDackel
https://github.com/yoyoong/mHapSuite
https://github.com/yoyoong/mHapSuite
https://github.com/yoyoong/mHapSuite
https://github.com/yoyoong/mHapSuite
http://genome.cshlp.org/
http://www.cshlpress.com
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