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Abstract 

DNA methylation acts as a vital epigenetic regulatory mechanism in v olv ed in controlling gene e xpression. A dv ances in sequencing technologies 
ha v e enabled characterization of methylation patterns at single-base resolution using bisulfite sequencing approaches. Ho w e v er, e xisting meth y - 
lation databases ha v e primarily f ocused on mean meth ylation le v els, o v erlooking phased meth ylation patterns. T he meth ylation status of CpGs 
on individual sequencing reads represents discrete DNA methylation haplotypes (mHaps). Here, we present mHapBrowser, a comprehensive 
database for visualizing and analyzing mHaps. We systematically processed data of diverse tissues in human, mouse and rat from public reposi- 
tories, generating mHap format files for 6366 samples. mHapBrowser enables users to visualize eight mHap metrics across the genome through 
an integrated WashU Epigenome Browser. It also provides an online server for comparing mHap patterns across samples. Additionally, mHap 
files for all samples can be downloaded to facilitate local processing using downstream analysis toolkits. The utilities of mHapBrowser were 
demonstrated through three case studies: (i) mHap patterns are associated with gene expression; (ii) changes in mHap patterns independent 
of mean methylation correlate with differential expression between lung cancer subtypes; and (iii) the mHap metric MHL outperforms mean 
meth ylation f or classifying tumor and normal samples from cell-free DNA. T he database is freely accessible at http:// mhap.sibcb.ac.cn/ . 
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Introduction 

DNA methylation is an important epigenetic modification that
plays a crucial role in gene regulation, genome stability, cellu-
lar differentiation and disease processes ( 1 ). Sequencing-based
methodologies, such as whole-genome bisulfite sequencing
(WGBS), reduced representation bisulfite sequencing (RRBS)
and targeted bisulfite sequencing (BS-seq), enable character-
ization of DNA methylation patterns at a single-nucleotide
resolution. The continuous accumulation of extensive exper-
iments and datasets presents significant challenges for inte-
grating and mining DNA methylation data. To address this,
several databases have been established, including MethDB
( 2 ), MethBase ( 3 ), DNMIVD ( 4 ), NGSmethDB ( 5 ) and Meth-
Bank ( 6 ). However, these databases primarily focus on mean
methylation levels at each CpG site, overlooking phased DNA
methylation patterns. Even when derived from bulk data, CpG
methylation within an individual read fragment can be traced
back to a single chromosome in a single cell. Thus, the methy-
lation pattern of CpGs on each fragment represents a dis-
crete methylation haplotype (mHap). Several DNA methyla-
tion metrics have been proposed to quantify mHap-level pat-
terns in bulk BS-seq data ( 7 ). Notably, mHap-level metrics,
including proportion of discordant reads (PDR) ( 8 ), cellu-
lar heterogeneity-adjusted clonal methylation (CHALM) ( 9 )
and methylation concurrence ratio (MCR) ( 10 ), have demon-
strated greater ability to explain gene expression variation
compared to mean methylation. Additionally, methylated hap-
lotype load (MHL) ( 11 ) and methylation block score (MBS)
( 12 ) show promise for noninvasive early cancer detection. 

To improve accessibility of mHaps for the research commu-
nity, we comprehensively processed BS-seq data from public
databases. The results are presented as a novel, comprehen-
sive database called the DNA methylation haplotype browser
(mHapBrowser). Within this database, users can access a
full-featured WashU Epigenome Browser ( 13–16 ) to visualize
eight DNA methylation metrics. Additionally, this database
offers convenient functionalities to visualize DNA mHaps and
summarize related metrics, facilitating cross-sample compar-
isons. mHap files for all samples can be freely downloaded to
enable local processing with our mHap toolkit mHapSuite, a
Java implementation of mHapTk ( 17 ), along with the visual-
ization package deepTools ( 18 ). 

Materials and methods 

Data source 

The mHapBrowser database compiled and systematically cu-
rated DNA methylation sequencing data from publicly acces-
sible databases, including the NCBI Gene Expression Om-
nibus (GEO), Sequence Read Archive (SRA) and ArrayEx-
press. Sample annotations were automatically retrieved and
manually reviewed. Whenever possible, FASTQ files were
downloaded for downstream processing. 

Data processing 

For preprocessing of raw BS-seq data from GEO, SRA files
were obtained from the NCBI SRA database ( https://www.
ncbi.nlm.nih.gov/sra ) and converted into FASTQ format with
SRA-Toolkit (v3.0.2). Subsequently, Trim Galore (v0.6.2) was
utilized to remove adapters from the BS-seq reads. For WGBS
and targeted BS-seq data, the optimal value for the clip_R1
parameter, determining the number of bases trimmed from
the 5 

′ end, was identified by analyzing the top 250 000 reads.
Values ranging from 0 to 20 were tested, and the one yield- 
ing the highest mapping rate was selected. Then, the map- 
ping rate with the selected clip_R1 value was compared to 

that with clip_R1 set to 0. If the difference was under 5%,
clip_R1 was set to 0 to retain more data with adequate map- 
ping. Analogous procedures determined clip_R2 settings. For 
RRBS data, the ‘-rrbs’ flag was incorporated into the com- 
mand line. Trimmed reads were aligned to reference genomes 
with BSMAP (v2.90) ( 19 ) using the following parameters: ‘- 
q 20 -f 5 -r 0 -v 0.05 -s 16 -S 1’. For paired-end WGBS 
and targeted BS-seq, duplicates were marked by sambamba 
( 20 ). 

Processing of mHaps 

DNA mHaps were extracted from BAM files using mHap- 
Tools (v1.1) ( 21 ) and stored in mHap format. These files were 
then processed with mHapSuite (v2.0), available at https:// 
github.com/ yoyoong/ mHapSuite , using the following parame- 
ters: ‘-minK 1 -maxK 10 -K 4 -strand both -cpgCov 5 -r2Cov 
10’. This generated nine genome-wide tracks for each sam- 
ple: coverage (Cov), mean methylation (MM), PDR, CHALM,
MCR, MBS, MHL, entropy and linkage disequilibrium (LD) 
R -squared ( R 

2 ). 

DNA methylation metrics 

To calculate mHap metrics for a single CpG site, all reads cov- 
ering the site were utilized. For calculating PDR, CHALM,
MBS and entropy, only reads covering at least four CpG sites 
were considered. 

MM : MM is defined as the proportion of methylated CpG 

sites over all covered CpG sites, calculated as 

MM ( c ) = 

no . of methylated CpGs 
total no . of CpGs 

. 

PDR : PDR was calculated as the number of discordant 
reads over the total number of reads. A read was classified as 
concordant if it exhibited consistent DNA methylation states 
at all covered CpG positions, or as discordant otherwise. PDR 

for CpG c is defined as 

PDR ( c ) = 

no . of discordant reads covering c 
total no . of reads covering c 

. 

CHALM : CHALM was developed based on the assumption 

that methylation on a single CpG site can recruit repressors to 

chromatin. CHALM for CpG c is defined as 

CHALM ( c ) = 

no . of methylated reads covering c 
total no . of reads covering c 

. 

A read containing at least one methylated CpG site is clas- 
sified as a methylated read. 

MCR : MCR is defined as the ratio of number of unmethy- 
lated CpG sites in partially methylated reads to the total num- 
ber of covered CpG sites, calculated as 

MCR ( c ) = 

∑ P 
i =1 p i ∑ T 
i =1 t i 

, 

where P and T represent number of partially methylated reads 
and total number of reads covering CpG c , respectively. p i is 
the number of unmethylated CpG sites in partially methylated 

reads. t i is the total number of CpG sites in read i . 

https://www.ncbi.nlm.nih.gov/sra
https://github.com/yoyoong/mHapSuite
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MHL : MHL calculates weighted mean of the fraction of
ully methylated substrings at different lengths. MHL for CpG
 is calculated as 

MHL ( c ) = 

∑ 10 
i =1 i × P ( MH i ) ∑ 10 

i =1 i 
, 

here P( MH i ) is the fraction of fully methylated substrings of
ength i . For a haplotype of length l ( ≥10), all substrings from
ength 1 to 10 were considered in this calculation. 

MBS : MBS is another metric used to quantify the level of
uccessive methylation patterns. MBS is calculated as 

MBS ( c ) = 

1 

n 

×
n ∑ 

i =1 

( ∑ m 

j=1 l 
2 
i j 

L 

2 
i 

) 

, 

here n is the total number of reads that cover CpG c site. L i

enotes the number of CpG sites covered on i th read, while l i j 

epresents the length of j th successive methylated CpG block
plit by unmethylated CpG sites on i th read, and m is the total
ount of the blocks. 

Entropy : Following the concept of Shannon entropy H ( x ),
ethylation entropy is calculated as 

entropy ( c ) = −1 

4 

n ∑ 

i =1 

P ( H i ) × log 2 P ( H i ) . 

To account for the variability of fragment length, substrings
f mHaps were counted with a length of 4, representing 16
ypes of haplotypes. P( H i ) represents the probability of ob-
erving mHap H i . 

R 

2 . R 

2 metric quantifies the co-methylation level of pairwise
pGs. The R 

2 value for CpG c is the mean R 

2 value of CpG
 between two CpG sites before and after CpG c : 

R 

2 (a, b 

) = 

p ab − p a p b 

p a ( 1 − p a ) p b ( 1 − p b ) 
, 

R 

2 ( c ) = 

R 

2 ( c − 2 , c ) + R 

2 ( c − 1 , c ) + R 

2 ( c + 1 , c ) + R 

2 ( c + 2 , c ) 
4 

, 

here R 

2 ( a, b ) represents the R 

2 value of CpGs a and b ,
p a and p b represent the methylated proportions at CpGs a
nd b , respectively, and p ab represents the proportion of co-
ethylation at CpGs a and b . 

dentification of genes with differential promoter 
ispersion 

or a given sample, promoter PDR exhibits a nonlinear re-
ationship with mean methylation ( 8 ). To identify genes with
igher or lower promoter dispersion than expected, we uti-
ized a nonlinear method previously applied for constructing
ell-specific networks in single-cell RNA-seq analysis ( 22 ). Us-
ng default parameters (box size = 0.1, P -value = 0.01), genes
tting a nonlinear model were identified. Remaining genes
ere classified as having higher or lower dispersion based on

heir relative position in the PDR versus mean methylation
catter plot. 

atabase implementation 

he mHapBrowser was developed using Node.js ( https:
/nodejs.org ) and deployed on a Red Hat Linux Server.
he frontend was constructed using JavaScript and Type-
cript, rendered by React ( https://react.dev ) and styled us-
ng Material-UI ( https://mui.com ). The backend interface was
built using the hapi framework ( https:// hapi.dev/ ). Dataset
information was stored and managed in MySQL ( https://
www.mysql.com/), while the raw data were stored on the
Linux Server. The track data, with the exception of annota-
tion tracks, were accessed through backend API interfaces and
stored on the Linux Server. The annotation tracks were loaded
into MongoDB ( https:// www.mongodb.com/ ). All online anal-
ysis modules were implemented by executing the mHapSuite
Jar package ( https:// github.com/ yoyoong/ mHapSuite ). 

Processing of RNA-seq data 

For normal esophagus tissue (GSE149608), transcript abun-
dance was estimated using Kallisto (v0.46.1) ( 23 ), an ul-
trafast RNA-seq quantification program utilizing a pseu-
doalignment approach based on a preconstructed transcrip-
tome index. Abundance was reported in transcripts per mil-
lion (TPM). For the Cancer Cell Line Encyclopedia (CCLE)
data, the gene expression matrix was downloaded from the
CCLE website ( https:// sites.broadinstitute.org/ ccle/ ). Differ-
ential gene expression and methylation were analyzed by two-
sided rank sum test. Resulting P -values were adjusted for mul-
tiple testing by applying the Benjamini–Hochberg (BH) pro-
cedure. Statistical significance was reported as false discovery
rate (FDR) ( 24 ). 

Results 

Overview of mHapBrowser 

The mHapBrowser database is a comprehensive atlas of DNA
mHaps for human, mouse and rat (Figure 1 ). It contains 1815
WGBS, 4251 RRBS and 300 targeted BS-seq samples across
three species: human ( n = 5807), mouse ( n = 490) and rat
( n = 69). Blood has the most abundant data, with 54 datasets
and 978 samples. Rich quality control metrics are provided for
each sample, including alignment rate, mean coverage inside
and outside CpG islands (CGIs), and mean cytosine methyla-
tion levels in CpG, CHG and CHH contexts. Samples were
processed through a unified pipeline to generate mHap files,
serving as standard inputs for online analysis and visualiza-
tion. In mHapBrowser, the mHap files were directly utilized
to visualize phased DNA methylation patterns in specified ge-
nomic regions. Additionally, the mHap files were used to con-
struct genome-wide tracks depicting DNA methylation pat-
terns across the genome, characterized by eight DNA methy-
lation metrics. Briefly, mean methylation is the classical metric
used to measure methylation levels. Entropy and PDR were
developed to quantify epigenetic heterogeneity. CHALM and
MCR were proposed to better explain gene expression vari-
ation. MHL and MBS were designed specifically for nonin-
vasive early cancer detection. Finally, co-methylation between
pairs of CpGs was measured by LD R 

2 . 

User interface 

The mHapBrowser database serves as a centralized resource
for the analysis of DNA mHaps, consisting of three core mod-
ules: a dataset browser for finding samples of interest; an
epigenome browser for visualizing DNA methylation metrics
at the haplotype level across the genome; and an online server
for analyzing and comparing haplotype-level DNA methyla-
tion patterns across samples. Additionally, the mHap files for
all samples in dataset browser are freely downloadable to fa-

https://nodejs.org
https://react.dev
https://mui.com
https://hapi.dev/
https://www.mysql.com/
https://www.mongodb.com/
https://github.com/yoyoong/mHapSuite
https://sites.broadinstitute.org/ccle/
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Figure 1. Ov ervie w of mHapBro wser. mHapBro wser processes ra w dat a from public dat abases using a unified pipeline and presents the results as a 
centralized resource for the visualization and analysis of DNA mHaps. 
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cilitate local processing using mHapSuite ( 17 ) and publicly
available tools such as deepTools ( 18 ). 

Dataset browser 
This module displays metadata for each sample, including
data source, accession number, assay type, tissue type and dis-
ease status. Users can conveniently query samples of interest
using one or multiple keywords. For instance, using the acces-
sion number ‘GSE16256’ and tissue type ‘Lung’ as keywords
returned eight samples, comprising two primary samples and
six cell lines (Figure 2 A). Extensive quality control metrics are
provided for each sample, such as alignment rate, median cov-
erage inside and outside CGIs, and mean cytosine methylation
levels in CpG, CHH and CHG contexts (Figure 2 A). These
metrics enable users to select high-quality samples for down-
stream analysis. Notably, cytosine methylation in the CHH
context can be utilized to estimate bisulfite conversion rate,
with a value below 1% indicating a conversion rate above
99%. 

Epigenome browser 
The mHapBrowser enables direct visualization of genome-
wide DNA methylation patterns using the WashU Epigenome
Browser ( 13–16 ). The dataset browser is seamlessly integrated
into the genome browser, allowing users to easily select sam-
ples of interest via the ‘mHap Data Hubs’ function (Figure
2 B). This integrated dataset browser offers identical func-
tionality to the stand-alone version, including keyword-based
querying and quality control metrics for all samples (Figure
2 C). Once a sample is selected, nine corresponding tracks be-
come available for visualization: Cov , MM, entropy , PDR,
CHALM, MCR, MBS, MHL and R 

2 . These tracks enable
users to explore comprehensive information related to the 
selected samples and their DNA methylation characteristics 
(Figure 2 D). In addition to the built-in gene annotations, users 
can upload custom data and annotation tracks in formats such 

as BAM, bigWig and BED, provided they are supported by the 
genome browser. 

Online analysis and visualization 

The mHapBrowser offers a panel of functions for analyzing 
and visualizing DNA methylation patterns (Figure 2 E). (i) The 
Tanghulu plot displays DNA mHaps in a specified genomic 
region. (ii) The mHapView module visualizes co-methylation 

patterns in particular genomic regions. (iii) Scatter plots dis- 
play relationships between two continuous variables, includ- 
ing comparisons of two DNA methylation metrics from the 
same or different samples. (iv) Box plots illustrate the distri- 
bution of metric values across multiple samples. (v) Heatmaps 
show signals within defined regions, with a focus on the cen- 
tral area. (vi) Profile plots display the average signal profiles 
in predetermined genomic intervals and flanking regions. (vii) 
Enrichment plots display the percentage of genomic features 
overlapping user-specified intervals such as open chromatin 

regions. 

Case study 1: mHap patterns are associated with 

gene expression 

DNA methylation is widely recognized to be negatively cor- 
related with gene expression. Utilizing mHap files in mHap- 
Browser facilitates exploration of the relationship between 

DNA methylation patterns and gene expression. In mHap- 
Browser, DNA methylation patterns can be quantified by var- 
ious mHap-level metrics (Figure 3 A). Notably, regions with 
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imilar mean methylation can exhibit distinct DNA methy-
ation patterns, as measured by different mHap-level met-
ics. To demonstrate this, publicly available data from nor-
al esophagus tissue were analyzed. The processed mHap
les can be accessed under accession number GSE149608
Supplementary Table S1). As expected, a negative correla-
ion was observed between gene expression levels and mean
ethylation levels in promoter regions, with lower expressed

enes tending to show higher DNA methylation (Figure 3 B,
pper panel). It is notable that even within normal tissues,
he population consists of a heterogeneous mixture of cells.
When quantifying epigenetic diversity using PDR, we found a
similar negative correlation between PDR and gene expres-
sion in promoter regions (Figure 3 B, middle panel). Addi-
tionally, MCR that quantifies methylation and demethylation
was even more effective in distinguishing between genes with
different expression levels (Figure 3 B, lower panel). Previous
studies have demonstrated a nonlinear correlation between
PDR and mean methylation ( 8 ). Specifically, a positive cor-
relation between PDR and mean methylation is observed at
low methylation levels, whereas a negative correlation is ob-
served at high methylation levels. We further identified pro-
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A B C

D

E

Figure 3. Association of DNA methylation patterns with gene expression. ( A ) Three hypothetical mHap patterns, each having an identical mean 
meth ylation le v el, are illustrated f or a representativ e genomic region. ( B ) Correlation betw een gene e xpression and DNA meth ylation metrics. Using 
matched RNA-seq and WGBS data from normal esophageal tissue (GSE149608), genes were categorized into four equal expression quantile groups 
(0–25%, 25–50%, 50–75%, 75–100%). Mean methylation, PDR and MCR average profiles around transcription start site (TSS) are presented. ( C ) 
Identification of genes with differential promoter discordance. Genes that were explained by a nonlinear model are shown in the middle (see 
the ‘Materials and Methods’ section) ( P < 0.01). Genes exhibiting higher or lower promoter discordance than expected are depicted in upper and lower 
parts, respectively. Gene expression distribution is shown in panel ( D ) as box plots. ( E ) Epigenome browser screenshots of sample genes with 
differential promoter discordance. Mean gene expression levels are shown for both genes. 
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moters with significantly higher or lower discordance than ex-
pected, considering their mean methylation as a conditional
factor ( P < 0.01) (Figure 3 C, Supplementary Table S2). In-
terestingly, the distributions of gene expression among these
three groups show statistically significant differences, indicat-
ing the association of DNA methylation patterns with gene
expression (Figure 3 D). Specifically, genes with underdisper-
sion in promoters demonstrate activation, while overdispersed
genes are repressed. For instance, both RTN4 and PTPN3
have similar mean methylation around 0.2; RTN4 is activated
(TPM = 229) and PTPN3 is repressed (TPM = 13), a dis-
parity that could be attributed to the higher promoter discor-
dance in PTPN3 compared to the lower discordance in RTN4
(Figure 3 E). 
Case study 2: mHap patterns are associated with 

differential gene expression 

To investigate the potential associations between DNA methy- 
lation patterns and differentially expressed genes (DEGs),
we conducted an analysis using the CCLE dataset (PR- 
JNA523380). The corresponding mHap files can be obtained 

from mHapBrowser by searching ‘CCLE’ (Supplementary Ta- 
ble S1). As an example, we compared the DNA methylation 

profiles of non-small cell lung cancer (NSCLC) ( n = 122) and 

small cell lung cancer (SCLC) ( n = 49). To control the influ- 
ence of mean methylation changes, we first identified 13 205 

genes that displayed no significant alterations in mean methy- 
lation levels within their promoter regions (|mean methylation 

change| < 0.1, FDR > 5%) (Figure 4 A). In parallel, we com- 
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Figure 4. Association of DNA methylation patterns with differential gene expression. ( A ) Differential methylation analysis between NSCLC ( n = 122) and 
SCLC ( n = 49) samples. Statistical significance was assessed using a two-sided rank sum test with multiple testing correction via the BH procedure. 
Genes with unchanged promoter mean methylation (|change| < 0.1, FDR > 0.05) were identified. ( B ) DEGs between NSCLC and SCLC were identified 
using FDR < 5%. Statistical significance was assessed using a two-sided rank sum test with multiple testing correction via the BH method. ( C ) Genes 
exhibiting differential expression without changes in promoter mean methylation showed significant alterations in promoter PDR. ( D ) Gene set 
enrichment analysis demonstrated associations between PDR changes and expression changes. ( E ) Six DNA methylation metrics associated with 
expression changes as determined by Fisher’s exact test (all P < 2.22 × 10 −16 ); only odds ratios are shown. ( F ) An example gene CADPS exhibiting 
significant alterations in PDR, CHALM and entropy but not mean methylation in NSCLC compared to SCLC. 
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ared the gene expression profiles of NSCLC and SCLC and
dentified 13 798 DEGs (FDR < 5%) (Figure 4 B). The shared
enes represent DEGs without significant changes in promoter
ean methylation. Remarkably, among these genes, upregu-

ated genes and downregulated genes show significant differ-
nce in promoter PDR (FDR < 5%), indicating the presence of
n association between DNA methylation patterns and DEGs
hat is independent of changes in mean methylation (Figure
 C). Alternatively, when we specifically select genes with a
ignificant decrease in PDR but no significant change in mean
ethylation, they were found to be upregulated in NSCLC,

s demonstrated by gene set enrichment analysis ( P < 0.001)
Figure 4 D, left panel). Similarly, genes with a significant in-
rease in PDR but no significant change in mean methylation
re repressed in NSCLC ( P < 0.001) (Figure 4 D, right panel).
n this way, we found that differential gene expression is asso-
iated with DNA methylation patterns characterized by all six
etrics, comprising entropy, MCR, PDR, CHALM, MHL and
BS (Fisher’s exact test, P -value < 10 

−16 ) (Figure 4 E, Sup-
lementary Table S3). As an example, CADPS is found to be
ignificantly downregulated in NSCLC cell lines compared to
CLC cell lines, which can be potentially explained by changes
f DNA methylation patterns in the promoter region, consid-
ring the minimal change in mean methylation (Figure 4 F). 

ase study 3: DNA methylation marker for cancer 
etection 

NA methylation has been extensively utilized as markers
or cancer detection. Using mHapBrowser, we can easily as-
sess predefined markers using cancer and normal tissue sam-
ples. For instance, Smith et al. identified a cluster of CGIs that
displayed hypermethylation in mouse extraembryonic ecto-
derm and exhibited similar methylation patterns in most hu-
man cancer types, thus representing a universal cancer sig-
nature ( 25 ). The initial study showed distributions of mean
methylation in The Cancer Genome Atlas tumors and their
corresponding normal tissues, which were profiled using the
450K array . In this study , we demonstrate the presence of
this signature in 11 tumor types that were profiled with
RRBS, using DNA methylation metric MHL, which quan-
tify co-methylation patterns (Supplementary Table S1). As
expected, significant differences between tumor and normal
samples were observed in all cancer types (rank sum test,
P < 10 

−16 ) (Figure 5 A). The data in mHapBrowser also al-
low us to evaluate the performance of various DNA methy-
lation metrics. Previous research has shown that MHL pre-
serves a higher signal-to-noise ratio than mean methylation
and, as a result, performs better in noninvasive cancer detec-
tion using DNA methylation of cell-free DNA ( 11 ). We uti-
lized a publicly available dataset, GSE149438 (Supplemen-
tary Table S1), which profiled cell-free DNA from esophageal
squamous cell carcinoma and normal individuals using tar-
geted BS-seq, to compare the performance of mean methyla-
tion and MHL by a support vector machine. With different
assignment of training and validation, the MHL-based model
demonstrated superior performance compared to the mean
methylation-based model (Figure 5 B), as evidenced by a higher
area under the receiver operating characteristic curve (AUC).
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Figure 5. Utilizing mHap metrics for early cancer detection. ( A ) Evaluation of cancer signatures using mHapBrowser datasets. ( B , C ) Comparison of the 
performance of MHL and mean methylation for cancer detection using dataset GSE149438 with various training and validation set partitions. ( D , E ) The 
red point in panel (B) represents a typical result, highlighting that small differences in AUC can result in significant sensitivity differences at high 
specificity. 
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Although the improvement in overall performance was mod-
est, the difference was found to be statistically significant
(paired rank sum test P -value < 6 × 10 

−9 ) (Figure 5 C). Im-
portantly, even a minor enhancement in AUC can lead to sub-
stantial changes in sensitivity, especially in situations requiring
high specificity. For instance, when specificity was set to 0.98,
the MHL-based model achieved a sensitivity of 89.56% in
contrast to 73.78% from the mean methylation-based model
(Figure 5 D and E). 

Discussion and future developments 

DNA methylation serves as an epigenetic regulatory mecha-
nism involved in various critical biological processes. In BS-
seq data, the DNA methylation status of CpG sites on the
same sequencing read represents a discrete mHap, enabling
decoding of the epigenetic code beyond mean methylation lev-
els. However, there is a lack of well-curated resources offer-
ing tools and consistently processed mHap files for data inte-
gration. To address this need, we present the mHapBrowser
database as a centralized resource for the analysis and visu-
alization of DNA mHaps. Moving forward, our research will
focus on the following aims: (i) expanding the datasets to in-
clude more species and cell types; (ii) continually updating
the mHapSuite package to provide additional functionalities
for offline processing of mHap files; and (iii) incorporating 
multi-omics data such as RNA-seq and A T AC-seq (assay for 
transposase-accessible chromatin using sequencing) for online 
integration and analysis. As demonstrated by the case studies,
the continuous development of mHapBrowser will be devoted 

to both basic research and translational applications such as 
early cancer detection. 

Data availability 

The mHapBrowser database is freely accessible online, with 

all data available at http://mhap.sibcb.ac.cn . mHapSuite 
is available at https:// github.com/ yoyoong/ mHapSuite . All 
source data and code have been uploaded to Figshare and 

are available at https:// figshare.com/ projects/ mHapBrowser/ 
175104 . 

Supplementary data 

Supplementary Data are available at NAR Online. 
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